Spaces:
Running
Running
File size: 46,982 Bytes
b247dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
"""Rajkumar prompt formatter."""
from random import shuffle
from manifest import Manifest
from schema import Table
import re
class RajkumarFormatter:
"""RajkumarFormatter class.
From https://arxiv.org/pdf/2204.00498.pdf.
"""
table_sep: str = "\n\n"
shuffle_table_order: bool = True
_cache: dict[tuple[str, str, str], list[str]] = {}
clean_whitespace = False
@classmethod
def format_table(cls, table: Table) -> str:
"""Get table format."""
table_fmt = []
for col in table.columns or []:
# This is technically an incorrect type, but it should be a catchall word
table_fmt.append(f" {col.name} {col.dtype or 'any'}")
if table_fmt:
all_cols = ",\n".join(table_fmt)
create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
else:
create_tbl = f"CREATE TABLE {table.name}"
return create_tbl
@classmethod
def format_all_tables(cls, tables: list[Table], instruction: str) -> list[str]:
"""Get all tables format."""
table_texts = [cls.format_table(table) for table in tables]
key = ("tables", instruction, str(tables))
if key not in cls._cache:
shuffle(table_texts)
cls._cache[key] = table_texts
else:
table_texts = cls._cache[key]
return table_texts
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n\n/*\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n*/"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n""" # noqa: E501
@classmethod
def format_model_output(cls, output_sql: str, prompt: str) -> str:
"""Format model output."""
clean_sql = (output_sql
.replace('```sql\n', '')
.replace('```duckdb\n', '')
.replace('```\n', '')
.replace('```', '')).strip()
if clean_sql.find(';') != -1:
clean_sql[:clean_sql.find(';')].strip()
if not clean_sql.endswith(";"):
clean_sql += ";"
return clean_sql
@classmethod
def format_gold_output(cls, output_sql: str) -> str:
"""Format gold output for demonstration."""
return output_sql
class MotherDuckFormatter(RajkumarFormatter):
"""MotherDuck class."""
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n""" # noqa: E501
class DuckDBFormatter(RajkumarFormatter):
"""DuckDB class."""
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n""" # noqa: E501
class DuckDBInstFormatter(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response (use duckdb shorthand if possible):\n"""
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
input = ""
if table_text:
input = """Here is the database schema that the SQL query will run on:\n{schema}\n""".format( # noqa: E501
schema=table_text
)
instruction = cls.PROMPT_TEMPLATE.format(
instruction=cls.INSTRUCTION_TEMPLATE.format(
has_schema="."
if table_text == ""
else ", given a duckdb database schema."
),
context=context_text,
input=input,
question=instruction,
)
return instruction
class DuckDBInstFormatterLlamaShort(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlamaBasic(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlamaSyntax(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGraniteShort(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!
Answer:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterLlama(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|begin_of_text|>
Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.
## DuckDB SQL syntax specifics you should be aware of:
### Case Insensitivity and Quoting:
Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```
### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```
### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.
```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```
### CREATE TABLE AS (CTAS): Create tables from query results.
```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```
### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.
```
FROM my_table WHERE condition; -- Equivalent to SELECT * FROM my_table WHERE condition
```
### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.
```
SELECT 1 + 1 AS result;
```
### GROUP BY ALL/ORDER BY ALL: Shorthand for grouping/ordering by all non-aggregated/all columns.
```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```
### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.
```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;
-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```
### UNION BY NAME: Combine tables by matching column names, not just their positions.
```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```
### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::
```
SELECT '42' + 1; -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```
### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.
```
SELECT 'DuckDB'[1:4]; -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```
### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.
In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```
When creating a table:
```
CREATE TABLE data (
my_list INTEGER[],
my_struct STRUCT(a INTEGER, b TEXT),
my_map MAP(INTEGER, VARCHAR),
my_array INTEGER[3]
);
```
### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.
```
SELECT strftime(NOW(), '%Y-%m-%d'); -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```
### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.
```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```
### List Comprehensions: Generate lists using expressions similar to Python list comprehensions.
```
SELECT [x*2 FOR x IN [1, 2, 3]]; -- Returns [2, 4, 6]
```
### Function Chaining: Chain multiple function calls together using the dot (.) operator.
```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```
### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.
```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```
### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.
```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```
### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.
```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```
### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.
```
SUMMARIZE table_name;
```
### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).
```
DESCRIBE table_name;
```
Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Task:
Write a DuckDB SQL query for the given question!
Here is the valid DuckDB SQL query:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGranite(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.
## DuckDB SQL syntax specifics you should be aware of:
### Case Insensitivity and Quoting:
Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```
### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```
### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.
```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```
### CREATE TABLE AS (CTAS): Create tables from query results.
```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```
### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.
```
FROM my_table WHERE condition; -- Equivalent to SELECT * FROM my_table WHERE condition
```
### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.
```
SELECT 1 + 1 AS result;
```
### GROUP BY ALL/ORDER BY ALL: Shorthand for grouping/ordering by all non-aggregated/all columns.
```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```
### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.
```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;
-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```
### UNION BY NAME: Combine tables by matching column names, not just their positions.
```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```
### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::
```
SELECT '42' + 1; -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```
### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.
```
SELECT 'DuckDB'[1:4]; -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```
### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.
In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```
When creating a table:
```
CREATE TABLE data (
my_list INTEGER[],
my_struct STRUCT(a INTEGER, b TEXT),
my_map MAP(INTEGER, VARCHAR),
my_array INTEGER[3]
);
```
### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.
```
SELECT strftime(NOW(), '%Y-%m-%d'); -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```
### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.
```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```
### List Comprehensions: Generate lists using expressions similar to Python list comprehensions.
```
SELECT [x*2 FOR x IN [1, 2, 3]]; -- Returns [2, 4, 6]
```
### Function Chaining: Chain multiple function calls together using the dot (.) operator.
```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```
### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.
```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```
### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.
```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```
### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.
```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```
### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.
```
SUMMARIZE table_name;
```
### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).
```
DESCRIBE table_name;
```
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Please write a DuckDB SQL query that answers the user's question or instruction. Use DuckDB-specific syntax if possible.
Answer:
```
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterPhi(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """<|endoftext|><|user|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here are some DuckDB SQL syntax specifics you should be aware of:
- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR), my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!<|end|>
<|assistant|>
```sql
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterGPTmini(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """Schema:
```sql
{schema}
```
Question:
{question}
Write a valid DuckDB SQL query to answer the question!
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstFormatterPhiAzure(RajkumarFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}
Question:
Here is the question or an instruction the user provided:
{question}
Write a DuckDB SQL query for the given question!
"""
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n### Documentation:\n{context_str}\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: str,
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
instruction = cls.PROMPT_TEMPLATE.format(
schema=table_text,
question=instruction
)
return instruction
class DuckDBInstNoShorthandFormatter(DuckDBInstFormatter):
"""DuckDB Inst class."""
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response:\n"""
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
class DuckDBChat:
"""DuckDB Inst class."""
table_sep: str = "\n\n"
shuffle_table_order: bool = True
_cache: dict[tuple[str, str, str], list[str]] = {}
clean_whitespace = False
model = None
@classmethod
def format_table(cls, table: Table) -> str:
"""Get table format."""
table_fmt = []
for col in table.columns or []:
# This is technically an incorrect type, but it should be a catchall word
table_fmt.append(f" {col.name} {col.dtype or 'any'}")
if table_fmt:
all_cols = ",\n".join(table_fmt)
create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
else:
create_tbl = f"CREATE TABLE {table.name}"
return create_tbl
@classmethod
def format_all_tables(cls, tables: list[Table], instruction: str) -> list[dict]:
"""Get all tables format."""
if not cls.model:
cls.model = Manifest(
engine="gpt-3.5-turbo",
client_name="openaichat",
cache_name="sqlite",
cache_connection=".manifest.sqlite",
)
table_texts = [cls.format_table(table) for table in tables]
full_schema = cls.table_sep.join(table_texts)
prompt = f"""SQL schema of my database:
{full_schema}
Explain in a few sentences what the data is about:
"""
messages = [
{
"role": "system",
"content": "You are a helpful assistant that can generate an human redable summary of database content based on the schema.",
},
{"role": "user", "content": prompt},
]
explanation = cls.model.run(messages, temperature=0)
messages.append({"role": "assistant", "content": explanation})
return messages[1:]
@classmethod
def format_retrieved_context(
cls,
context: list[str],
) -> str:
"""Format retrieved context."""
context_str = "\n--------\n".join(context)
return f"\n\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n"
@classmethod
def format_prompt(
cls,
instruction: str,
table_text: list[dict],
context_text: str,
) -> str | list[str]:
"""Get prompt format."""
prompt = f"""Now output a single SQL query without any explanation and do not add anything
to the query that was not part of the question, also do not use markdown. Make sure to only
use information provided in the prompt, or tables and columns from the schema above and write a query to answer the question.{context_text}\n\nMy quesiton is \n`{instruction}`\n\nGenerate the DuckDB specific SQL query:""" # noqa: E501
messages = [
{
"role": "system",
"content": "You are a helpful assistant that can generate DuckDB sql queries, which is a superset of Postgresql, based on the user input. You do not respond with any human readable text, only SQL code.",
},
*table_text,
{"role": "user", "content": prompt},
]
return messages
@classmethod
def format_model_output(cls, output_sql: str, prompt: str) -> str:
"""Format model output."""
return output_sql
@classmethod
def format_gold_output(cls, output_sql: str) -> str:
"""Format gold output for demonstration."""
return output_sql
|