File size: 46,982 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
"""Rajkumar prompt formatter."""

from random import shuffle
from manifest import Manifest
from schema import Table
import re


class RajkumarFormatter:
    """RajkumarFormatter class.

    From https://arxiv.org/pdf/2204.00498.pdf.
    """

    table_sep: str = "\n\n"
    shuffle_table_order: bool = True
    _cache: dict[tuple[str, str, str], list[str]] = {}
    clean_whitespace = False

    @classmethod
    def format_table(cls, table: Table) -> str:
        """Get table format."""
        table_fmt = []
        for col in table.columns or []:
            # This is technically an incorrect type, but it should be a catchall word
            table_fmt.append(f"    {col.name} {col.dtype or 'any'}")
        if table_fmt:
            all_cols = ",\n".join(table_fmt)
            create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
        else:
            create_tbl = f"CREATE TABLE {table.name}"
        return create_tbl

    @classmethod
    def format_all_tables(cls, tables: list[Table], instruction: str) -> list[str]:
        """Get all tables format."""
        table_texts = [cls.format_table(table) for table in tables]
        key = ("tables", instruction, str(tables))
        if key not in cls._cache:
            shuffle(table_texts)
            cls._cache[key] = table_texts
        else:
            table_texts = cls._cache[key]
        return table_texts

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n\n/*\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n*/"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n"""  # noqa: E501

    @classmethod
    def format_model_output(cls, output_sql: str, prompt: str) -> str:
        """Format model output."""
        clean_sql = (output_sql
            .replace('```sql\n', '')
            .replace('```duckdb\n', '')
            .replace('```\n', '')
            .replace('```', '')).strip()

        if clean_sql.find(';') != -1:
            clean_sql[:clean_sql.find(';')].strip()

        if not clean_sql.endswith(";"):
            clean_sql += ";"

        return clean_sql

    @classmethod
    def format_gold_output(cls, output_sql: str) -> str:
        """Format gold output for demonstration."""
        return output_sql

class MotherDuckFormatter(RajkumarFormatter):
    """MotherDuck class."""

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n"""  # noqa: E501


class DuckDBFormatter(RajkumarFormatter):
    """DuckDB class."""

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        return f"""{table_text}\n\n\n-- Using valid DuckDB SQL, answer the following question for the tables provided above.{context_text}\n\n-- {instruction}\n```sql\n"""  # noqa: E501


class DuckDBInstFormatter(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response (use duckdb shorthand if possible):\n"""
    INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}"""  # noqa: E501

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        input = ""
        if table_text:
            input = """Here is the database schema that the SQL query will run on:\n{schema}\n""".format(  # noqa: E501
                schema=table_text
            )
        instruction = cls.PROMPT_TEMPLATE.format(
            instruction=cls.INSTRUCTION_TEMPLATE.format(
                has_schema="."
                if table_text == ""
                else ", given a duckdb database schema."
            ),
            context=context_text,
            input=input,
            question=instruction,
        )
        return instruction

class DuckDBInstFormatterLlamaShort(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.

Here are some DuckDB SQL syntax specifics you should be aware of:

- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR),  my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```

Question:
Here is the question or an instruction the user provided:
{question}

Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

```sql
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterLlamaBasic(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```

Question:
Here is the question or an instruction the user provided:
{question}

Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

```sql
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterLlamaSyntax(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.

Here are some DuckDB SQL syntax specifics you should be aware of:

- DuckDB uses double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB has an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR),  my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`<|eot_id|>
<|start_header_id|>user<|end_header_id|>

Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
```sql
{schema}
```

Question:
Here is the question or an instruction the user provided:
{question}

Task:
Write a DuckDB SQL query for the given question!<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

```sql
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterGraniteShort(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """System:
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.

Here are some DuckDB SQL syntax specifics you should be aware of:


- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR),  my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`

Here is the schema of the DuckDB database that the SQL query will run on:
{schema}

Question:
Here is the question or an instruction the user provided:
{question}

Write a DuckDB SQL query for the given question!

Answer:
```
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterLlama(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """<|begin_of_text|>

Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.

## DuckDB SQL syntax specifics you should be aware of:

### Case Insensitivity and Quoting:

Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```

### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```

### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.

```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```

### CREATE TABLE AS (CTAS): Create tables from query results.

```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```

### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.

```
FROM my_table WHERE condition;  -- Equivalent to SELECT * FROM my_table WHERE condition
```

### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.

```
SELECT 1 + 1 AS result;
```

### GROUP BY ALL/ORDER BY ALL:  Shorthand for grouping/ordering by all non-aggregated/all columns.

```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```

### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.

```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;

-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```

### UNION BY NAME: Combine tables by matching column names, not just their positions.

```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```

### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::

```
SELECT '42' + 1;  -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```

### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.

```
SELECT 'DuckDB'[1:4];  -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```

### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.

In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```

When creating a table:
```
CREATE TABLE data (
    my_list INTEGER[],
    my_struct STRUCT(a INTEGER, b TEXT),
    my_map MAP(INTEGER, VARCHAR),
    my_array INTEGER[3]
);
```

### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.

```
SELECT strftime(NOW(), '%Y-%m-%d');  -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```

### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.

```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```

### List Comprehensions:  Generate lists using expressions similar to Python list comprehensions.

```
SELECT [x*2 FOR x IN [1, 2, 3]];  -- Returns [2, 4, 6]
```

### Function Chaining: Chain multiple function calls together using the dot (.) operator.

```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```

### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.

```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```

### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.

```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```

### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.

```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```

### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.

```
SUMMARIZE table_name;
```

### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).

```
DESCRIBE table_name;
```

Database Schema:
Here is the schema of the DuckDB database that the SQL query will run on:
{schema}

Question:
Here is the question or an instruction the user provided:
{question}

Task:
Write a DuckDB SQL query for the given question!

Here is the valid DuckDB SQL query:
```
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterGranite(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """System:

Your task is to generate valid DuckDB SQL to answer the following question, given a DuckDB database schema.

## DuckDB SQL syntax specifics you should be aware of:

### Case Insensitivity and Quoting:

Identifiers (tables, columns): Case-insensitive, but DuckDB remembers the case you use. Use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity.
```
CREATE TABLE "My Table" ("column_name" VARCHAR); -- Spaces and mixed case
SELECT "column_name" FROM "My Table";
```

### String Literals: Always use single quotes (') to define string literals.
```
SELECT 'This is a string' AS text;
```

### Direct File Querying: Query CSV, Parquet, and JSON files directly without loading them first.

```
SELECT * FROM 'data.csv';
SELECT * FROM 'data.parquet';
SELECT * FROM 'data.json';
```

### CREATE TABLE AS (CTAS): Create tables from query results.

```
CREATE TABLE squares AS SELECT i, i * i AS square FROM generate_series(1, 10) t(i);
```

### FROM-First Syntax (Optional SELECT): Start queries with FROM, and optionally omit SELECT *.

```
FROM my_table WHERE condition;  -- Equivalent to SELECT * FROM my_table WHERE condition
```

### SELECT without FROM: DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly.

```
SELECT 1 + 1 AS result;
```

### GROUP BY ALL/ORDER BY ALL:  Shorthand for grouping/ordering by all non-aggregated/all columns.

```
SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;
SELECT * FROM my_table ORDER BY ALL;
```

### SELECT COLUMNS(): Powerful way to select or transform multiple columns using patterns or functions.

```
-- Select columns matching a pattern
SELECT COLUMNS('sales_.*') FROM sales_data;

-- Transform multiple columns with a function
SELECT AVG(COLUMNS(*)) FROM sales_data;
```

### UNION BY NAME: Combine tables by matching column names, not just their positions.

```
SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;
```

### Implicit/Explicit Casting: DuckDB is generally more lenient with implicit type conversions, but you can always be explicit using ::

```
SELECT '42' + 1;  -- Implicit cast, result is 43
SELECT '42'::INTEGER + 1; -- Explicit cast, result is 43
```

### String/List Slicing: Extract parts of strings and lists using [start:end] or [start:end:step] syntax.

```
SELECT 'DuckDB'[1:4];  -- Returns 'Duck'
SELECT [1, 2, 3, 4][1:3]; -- Returns [1, 2, 3]
```

### Simple List/Struct/Map/Array Creation: Create complex types using intuitive syntax.

In a SELECT statement:
```
SELECT [1, 2, 3] AS my_list, {{'a': 1, 'b': 'text'}} AS my_struct, MAP([1,2],['one','two']) as my_map;
```

When creating a table:
```
CREATE TABLE data (
    my_list INTEGER[],
    my_struct STRUCT(a INTEGER, b TEXT),
    my_map MAP(INTEGER, VARCHAR),
    my_array INTEGER[3]
);
```

### Timestamp Conversions and Extraction: Convert between text and timestamps, and extract date parts.

```
SELECT strftime(NOW(), '%Y-%m-%d');  -- Current date as 'YYYY-MM-DD'
SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP; -- String to timestamp
SELECT EXTRACT(YEAR FROM DATE '2023-07-23'); -- Extract year
```

### Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses.

```
SELECT a + b AS total
FROM my_table
WHERE total > 10
GROUP BY total
HAVING total < 20;
```

### List Comprehensions:  Generate lists using expressions similar to Python list comprehensions.

```
SELECT [x*2 FOR x IN [1, 2, 3]];  -- Returns [2, 4, 6]
```

### Function Chaining: Chain multiple function calls together using the dot (.) operator.

```
SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB'
```

### Regular Expressions: DuckDB has built-in functions for regex matching, replacement, and extraction.

```
SELECT regexp_matches('DuckDB', 'Duck'); -- Returns true
SELECT regexp_replace('DuckDB', 'Duck', 'Goose'); -- Returns 'GooseDB'
SELECT regexp_extract('DuckDB', '(\w+)(DB)', 1); -- Returns 'Duck'
```

### Sampling: Quickly get a subset of your data with SAMPLE or TABLESAMPLE.

```
SELECT * FROM large_table USING SAMPLE 10%; -- Random 10% sample
SELECT * FROM large_table TABLESAMPLE BERNOULLI(10); -- Bernoulli sampling
```

### ATTACH and Access: Attach external databases and reference their objects using databasename.table_name syntax.

```
ATTACH 'my_database.duckdb' AS mydb;
SELECT * FROM mydb.my_table;
```

### SUMMARIZE: Get summary statistics (min, max, unique count, average, standard deviation, quartiles, and count) of a table.

```
SUMMARIZE table_name;
```

### DESCRIBE: Get schema of a table (column_name, column_type, null, key, default, extra).

```
DESCRIBE table_name;
```

Here is the schema of the DuckDB database that the SQL query will run on:
{schema}

Question:
Here is the question or an instruction the user provided:
{question}

Please write a DuckDB SQL query that answers the user's question or instruction. Use DuckDB-specific syntax if possible.

Answer:
```
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterPhi(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """<|endoftext|><|user|>
Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.

Here are some DuckDB SQL syntax specifics you should be aware of:


- DuckDB use double quotes (") for identifiers that contain spaces or special characters, or to force case-sensitivity and single quotes (') to define string literals
- DuckDB can query CSV, Parquet, and JSON directly without loading them first, e.g. `SELECT * FROM 'data.csv';`
- DuckDB supports CREATE TABLE AS (CTAS): `CREATE TABLE new_table AS SELECT * FROM old_table;`
- DuckDB queries can start with FROM, and optionally omit SELECT *, e.g. `FROM my_table WHERE condition;` is equivalent to `SELECT * FROM my_table WHERE condition;`
- DuckDB allows you to use SELECT without a FROM clause to generate a single row of results or to work with expressions directly, e.g. `SELECT 1 + 1 AS result;`
- DuckDB supports attaching multiple databases, unsing the ATTACH statement: `ATTACH 'my_database.duckdb' AS mydb;`. Tables within attached databases can be accessed using the dot notation (.), e.g. `SELECT * FROM mydb.table_name syntax`. The default databases doesn't require the do notation to access tables. The default database can be changed with the USE statement, e.g. `USE my_db;`.
- DuckDB is generally more lenient with implicit type conversions (e.g. `SELECT '42' + 1;` - Implicit cast, result is 43), but you can always be explicit using `::`, e.g. `SELECT '42'::INTEGER + 1;`
- DuckDB can extract parts of strings and lists using [start:end] or [start:end:step] syntax. Indexes start at 1. String slicing: `SELECT 'DuckDB'[1:4];`. Array/List slicing: `SELECT [1, 2, 3, 4][1:3];`
- DuckDB has a powerful way to select or transform multiple columns using patterns or functions. You can select columns matching a pattern: `SELECT COLUMNS('sales_.*') FROM sales_data;` or transform multiple columns with a function: `SELECT AVG(COLUMNS('sales_.*')) FROM sales_data;`
- DuckDB an easy way to include/exclude or modify columns when selecting all: e.g. Exclude: `SELECT * EXCLUDE (sensitive_data) FROM users;` Replace: `SELECT * REPLACE (UPPER(name) AS name) FROM users;`
- DuckDB has a shorthand for grouping/ordering by all non-aggregated/all columns. e.g `SELECT category, SUM(sales) FROM sales_data GROUP BY ALL;` and `SELECT * FROM my_table ORDER BY ALL;`
- DuckDB can combine tables by matching column names, not just their positions using UNION BY NAME. E.g. `SELECT * FROM table1 UNION BY NAME SELECT * FROM table2;`
- DuckDB has an inutitive syntax to create List/Struct/Map and Array types. Create complex types using intuitive syntax. List: `SELECT [1, 2, 3] AS my_list;`, Struct: `{{'a': 1, 'b': 'text'}} AS my_struct;`, Map: `MAP([1,2],['one','two']) as my_map;`. All types can also be nested into each other. Array types are fixed size, while list types have variable size. Compared to Structs, MAPs do not need to have the same keys present for each row, but keys can only be of type Integer or Varchar. Example: `CREATE TABLE example (my_list INTEGER[], my_struct STRUCT(a INTEGER, b TEXT), my_map MAP(INTEGER, VARCHAR),  my_array INTEGER[3], my_nested_struct STRUCT(a INTEGER, b Integer[3]));`
- DuckDB has an inutive syntax to access struct fields using dot notation (.) or brackets ([]) with the field name. Maps fields can be accessed by brackets ([]).
- DuckDB's way of converting between text and timestamps, and extract date parts. Current date as 'YYYY-MM-DD': `SELECT strftime(NOW(), '%Y-%m-%d');` String to timestamp: `SELECT strptime('2023-07-23', '%Y-%m-%d')::TIMESTAMP;`, Extract Year from date: `SELECT EXTRACT(YEAR FROM DATE '2023-07-23');`
- Column Aliases in WHERE/GROUP BY/HAVING: You can use column aliases defined in the SELECT clause within the WHERE, GROUP BY, and HAVING clauses. E.g.: `SELECT a + b AS total FROM my_table WHERE total > 10 GROUP BY total HAVING total < 20;`
- DuckDB allows generating lists using expressions similar to Python list comprehensions. E.g. `SELECT [x*2 FOR x IN [1, 2, 3]];` Returns [2, 4, 6].
- DuckDB allows chaining multiple function calls together using the dot (.) operator. E.g.: `SELECT 'DuckDB'.replace('Duck', 'Goose').upper(); -- Returns 'GOOSEDB';`
- DuckDB has a JSON data type. It supports selecting fields from the JSON with a JSON-Path expression using the arrow operator, -> (returns JSON) or ->> (returns text) with JSONPath expressions. For example: `SELECT data->'$.user.id' AS user_id, data->>'$.event_type' AS event_type FROM events;`
- DuckDB has built-in functions for regex regexp_matches(column, regex), regexp_replace(column, regex), and regexp_extract(column, regex).
- DuckDB has a way to quickly get a subset of your data with `SELECT * FROM large_table USING SAMPLE 10%;`

Here is the schema of the DuckDB database that the SQL query will run on:
{schema}

Question:
Here is the question or an instruction the user provided:
{question}

Write a DuckDB SQL query for the given question!<|end|>
<|assistant|>
```sql
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterGPTmini(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """Schema:
```sql
{schema}
```

Question:
{question}

Write a valid DuckDB SQL query to answer the question!
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstFormatterPhiAzure(RajkumarFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """Your task is to generate valid DuckDB SQL to answer the question that the user asks. You should only respond with a valid DuckDB SQL query.

Here is the schema of the DuckDB database that the SQL query will run on:
{schema}

Question:
Here is the question or an instruction the user provided:
{question}

Write a DuckDB SQL query for the given question!
"""

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n### Documentation:\n{context_str}\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: str,
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        instruction = cls.PROMPT_TEMPLATE.format(
            schema=table_text,
            question=instruction
        )
        return instruction

class DuckDBInstNoShorthandFormatter(DuckDBInstFormatter):
    """DuckDB Inst class."""

    PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response:\n"""
    INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}"""  # noqa: E501


class DuckDBChat:
    """DuckDB Inst class."""

    table_sep: str = "\n\n"
    shuffle_table_order: bool = True
    _cache: dict[tuple[str, str, str], list[str]] = {}
    clean_whitespace = False
    model = None

    @classmethod
    def format_table(cls, table: Table) -> str:
        """Get table format."""
        table_fmt = []
        for col in table.columns or []:
            # This is technically an incorrect type, but it should be a catchall word
            table_fmt.append(f"    {col.name} {col.dtype or 'any'}")
        if table_fmt:
            all_cols = ",\n".join(table_fmt)
            create_tbl = f"CREATE TABLE {table.name} (\n{all_cols}\n)"
        else:
            create_tbl = f"CREATE TABLE {table.name}"
        return create_tbl

    @classmethod
    def format_all_tables(cls, tables: list[Table], instruction: str) -> list[dict]:
        """Get all tables format."""
        if not cls.model:
            cls.model = Manifest(
                engine="gpt-3.5-turbo",
                client_name="openaichat",
                cache_name="sqlite",
                cache_connection=".manifest.sqlite",
            )
        table_texts = [cls.format_table(table) for table in tables]
        full_schema = cls.table_sep.join(table_texts)
        prompt = f"""SQL schema of my database:
{full_schema}
Explain in a few sentences what the data is about:
        """
        messages = [
            {
                "role": "system",
                "content": "You are a helpful assistant that can generate an human redable summary of database content based on the schema.",
            },
            {"role": "user", "content": prompt},
        ]
        explanation = cls.model.run(messages, temperature=0)
        messages.append({"role": "assistant", "content": explanation})
        return messages[1:]

    @classmethod
    def format_retrieved_context(
        cls,
        context: list[str],
    ) -> str:
        """Format retrieved context."""
        context_str = "\n--------\n".join(context)
        return f"\n\nHere is additional documentation about DuckDB that could be useful.\n--------\n{context_str}\n--------\n"

    @classmethod
    def format_prompt(
        cls,
        instruction: str,
        table_text: list[dict],
        context_text: str,
    ) -> str | list[str]:
        """Get prompt format."""
        prompt = f"""Now output a single SQL query without any explanation and do not add anything
to the query that was not part of the question, also do not use markdown. Make sure to only
use information provided in the prompt, or tables and columns from the schema above and write a query to answer the question.{context_text}\n\nMy quesiton is \n`{instruction}`\n\nGenerate the DuckDB specific SQL query:"""  # noqa: E501
        messages = [
            {
                "role": "system",
                "content": "You are a helpful assistant that can generate DuckDB sql queries, which is a superset of Postgresql, based on the user input. You do not respond with any human readable text, only SQL code.",
            },
            *table_text,
            {"role": "user", "content": prompt},
        ]
        return messages

    @classmethod
    def format_model_output(cls, output_sql: str, prompt: str) -> str:
        """Format model output."""
        return output_sql

    @classmethod
    def format_gold_output(cls, output_sql: str) -> str:
        """Format gold output for demonstration."""
        return output_sql