File size: 12,893 Bytes
b247dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""Run dataset on text2sql zazu experiment.

See README.md for more details.
"""
import datetime
import json
import multiprocessing
import random
import re
from pathlib import Path

import click
import numpy as np
from constants import PROMPT_FORMATTERS
from loaders import DefaultLoader
from get_manifest import get_manifest
from manifest import Manifest
from prompt_formatters import RajkumarFormatter
from rich.console import Console
from schema import Table, TextToSQLModelResponse, TextToSQLParams
from text_to_sql import instruction_to_sql, instruction_to_sql_list
from doc_retriever import (
    load_documentation,
    split_documents,
    embed_documents,
    query_docs,
)
from tqdm import tqdm
from transformers import AutoTokenizer

console = Console(soft_wrap=True)


def generate_sql(
    manifest: Manifest,
    text_to_sql_in: list[TextToSQLParams],
    retrieved_docs: list[list[str]],
    prompt_formatter: RajkumarFormatter,
    stop_tokens: list[str] | None = None,
    overwrite_manifest: bool = False,
    max_tokens: int = 300,
    temperature: float = 0.1,
    num_beams: int = 2,
    parallel: bool = False,
) -> list[tuple[str, TextToSQLModelResponse]]:
    """Call our text2sql function with manifest of our choice."""
    if parallel:
        instruction_to_sql_resps: list[
            TextToSQLModelResponse
        ] = instruction_to_sql_list(
            params=text_to_sql_in,
            extra_context=retrieved_docs,
            manifest=manifest,
            prompt_formatter=prompt_formatter,
            overwrite_manifest=overwrite_manifest,
            max_tokens=max_tokens,
            temperature=0.1,
            stop_sequences=stop_tokens,
            num_beams=num_beams,
        )
    else:
        instruction_to_sql_resps = [
            instruction_to_sql(
                params=_text_to_sql_in,
                extra_context=_retrieved_docs,
                manifest=manifest,
                prompt_formatter=prompt_formatter,
                overwrite_manifest=overwrite_manifest,
                max_tokens=max_tokens,
                temperature=temperature,
                stop_sequences=stop_tokens,
                num_beams=num_beams,
            )
            for _retrieved_docs, _text_to_sql_in in tqdm(
                zip(retrieved_docs, text_to_sql_in),
                desc="Generating SQL",
                total=len(text_to_sql_in),
                disable=(len(text_to_sql_in) <= 1),
            )
        ]
    assert len(instruction_to_sql_resps) == len(text_to_sql_in)

    sql_statements = []
    for i in range(len(instruction_to_sql_resps)):
        sql_statement = instruction_to_sql_resps[i].output.strip()
        if "<>" in sql_statement:
            sql_statement.replace("<>", "!=")
        # Models sometime train to predict <databasename/schema> | <sql>
        sql_statement = sql_statement.split("|")[-1].strip()
        sql_statements.append(sql_statement)
    return list(zip(sql_statements, instruction_to_sql_resps))


def get_text_to_sql_in(
    input_question: dict, db_to_tables: dict[str, dict[str, Table]]
) -> TextToSQLParams:
    """Format input question for text2sql function."""
    question = input_question["question"]
    db_id = input_question.get("db_id", None)
    if db_id != "none":
        table_params = list(db_to_tables.get(db_id, {}).values())
    else:
        table_params = []
    if len(table_params) == 0:
        console.print(f"[red] WARNING: No tables found for {db_id} [/red]")
    text_to_sql_in = TextToSQLParams(
        instruction=question,
        database=db_id,
        tables=table_params,
    )
    return text_to_sql_in


@click.group()
def cli() -> None:
    """Entrypoint."""
    pass


@cli.command()
@click.argument("dataset-path")
@click.argument("table-meta-path")
@click.option("--output-dir", type=str, default="")
@click.option("--run-name", type=str, default="")
@click.option("--num-run", type=int, default=-1)
@click.option("--num-print", type=int, default=20)
# Format options
@click.option("--prompt-format", type=str, default="spider")
# Prompt options
@click.option("--stop-tokens", type=str, default=[], multiple=True)
@click.option("--max-tokens", type=int, default=200)
@click.option("--temperature", type=float, default=0)
@click.option("--num-beams", type=int, default=-1)  # use whatever is in manifest
@click.option("--max-context-length", type=int, default=-1)
# Docs options
@click.option(
    "--markdown-docs-path",
    #type=click.Path(
    #    exists=True, file_okay=True, dir_okay=True, readable=True, path_type=Path
    #),
    default="eval/docs/duckdb-web/docs/archive/0.9.2/sql",
)
@click.option("--num-retrieved-docs", type=int, default=0)
# Manifest options
@click.option("--manifest-client", type=str, default="openai")
@click.option("--manifest-engine", type=str, default="gpt-4o")
@click.option("--manifest-connection", type=str, default="http://localhost:5005")
@click.option("--overwrite-manifest", is_flag=True, default=False)
@click.option("--parallel", is_flag=True, default=False)
def predict(
    dataset_path: str,
    table_meta_path: str,
    output_dir: str,
    run_name: str,
    num_run: int,
    num_print: int,
    prompt_format: str,
    stop_tokens: list[str],
    max_tokens: int,
    temperature: float,
    num_beams: int,
    max_context_length: int,
    markdown_docs_path: Path,
    num_retrieved_docs: int,
    manifest_client: str,
    manifest_engine: str,
    manifest_connection: str,
    overwrite_manifest: bool,
    parallel: bool,
) -> None:
    """Predict SQL.

    Args:
        dataset_path: the dataset path.
        table_meta_path: the json path of the table metadata.
        database_path: the database path for sqlite.
        output_dir: the prediction output directory
        run_name: special prefix to add to filename
        num_run: the number of examples to run
        num_print: the number of examples to print
        prompt_format: the format of the prompt. E.g., "rajkumar"
        stop_tokens: the stop tokens to try
        max_tokens: the max tokens
        temperature: the temperature
        num_beams: the number of beams
        max_context_length: max context length for demonstration truncation (-1 means None)
        markdown_docs_path: path to duckdb sql docs
        num_retrieved_docs: number of docs to retrieve
        manifest_client: the manifest client
        manifest_engine: the manifest engine
        manifest_connection: the manifest connection
    """
    multiprocessing.set_start_method("spawn", force=True)
    random.seed(0)
    np.random.seed(0)
    locals_dict = locals()
    locals_dict["markdown_docs_path"] = str(markdown_docs_path)
    console.print(json.dumps(locals_dict, indent=2))

    data_formatter = DefaultLoader()

    if prompt_format not in PROMPT_FORMATTERS:
        raise ValueError(f"Unknown prompt format {prompt_format}")
    prompt_formatter = PROMPT_FORMATTERS[prompt_format]()

    # load manifest
    manifest = get_manifest(
        manifest_client=manifest_client,
        manifest_connection=manifest_connection,
        manifest_engine=manifest_engine,
    )
    manifest_params = manifest.client_pool.get_current_client().get_model_params()
    console.print(f"Running with {manifest_params} manifest.")
    model_name = manifest_params.get("engine", manifest_params["model_name"])

    if manifest_client in {"openai", "openaichat", "openrouter", "azureendpoint"}:
        tokenizer = AutoTokenizer.from_pretrained("gpt2", trust_remote_code=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

    if stop_tokens:
        stop_tokens = [st.strip("'") for st in stop_tokens]
    console.print(f"Stop tokens: {stop_tokens}")

    # Get output filename
    full_dataset_path = Path(dataset_path)
    # Get todays date
    date_today = datetime.datetime.now().strftime("%y-%m-%d")
    if run_name:
        run_name = f"{run_name}_"
    suffix = f"{run_name}{full_dataset_path.stem}_{date_today}.json"  # noqa: E501
    prefix = f"{prompt_format}_{num_retrieved_docs}docs"
    if manifest_client in {"openai", "openaiazure"}:
        middleix = manifest_engine
    elif manifest_client in {"huggingface", "ray"}:
        middleix = Path(manifest_params.get("model_path", "")).name.replace("/", "-")
    elif manifest_client in {"toma", "openrouter", "openaichat", "azureendpoint"}:
        middleix = manifest_engine.split("/")[-1]
    else:
        raise ValueError(f"Unknown manifest client {manifest_client}")
    output_filename = f"{prefix}_{middleix}_{suffix}"
    console.print(f"Saving to {Path(output_dir) / output_filename}")
    Path(output_dir).mkdir(parents=True, exist_ok=True)

    console.print("Loading metadata...")
    db_to_tables = data_formatter.load_table_metadata(table_meta_path)

    console.print("Loading data...")
    data = data_formatter.load_data(dataset_path)
    if num_run > 0:
        console.print(f"Running on {min(len(data), num_run)} examples")
        data = data[:num_run]
    original_data = data

    # load the examples
    console.print("Formatting data...")
    num_print = min(num_print, len(data))
    token_lengths = []
    text_to_sql_in = [
        get_text_to_sql_in(input_question, db_to_tables) for input_question in data
    ]

    if num_retrieved_docs > 0:
        console.print("Loading documenration and indexing...")
        retrieved_docs = []
        doc_contents = load_documentation(markdown_docs_path)
        chunked_docs = split_documents(doc_contents)
        embedded_docs, full_embedding_mat = embed_documents(chunked_docs)
        for i in tqdm(range(len(text_to_sql_in)), desc="Retrieving docs"):
            _, retrieved_docs_strings = query_docs(
                text_to_sql_in[i].instruction,
                embedded_docs,
                full_embedding_mat,
                top_n=num_retrieved_docs,
            )
            retrieved_docs.append(retrieved_docs_strings)
    else:
        retrieved_docs = [[] for _ in range(len(text_to_sql_in))]

    for i in range(num_print):
        # Run a few to get some examples to print
        generated_responses = generate_sql(
            manifest=manifest,
            text_to_sql_in=[text_to_sql_in[i]],
            retrieved_docs=[retrieved_docs[i]],
            stop_tokens=stop_tokens,
            max_tokens=max_tokens,
            temperature=temperature,
            num_beams=num_beams,
            prompt_formatter=prompt_formatter,
            overwrite_manifest=overwrite_manifest,
            parallel=parallel,
        )
        for prediction, model_response in generated_responses:
            prediction = re.sub(r"[\s\t\n]+", " ", prediction)
            token_lengths.append(len(tokenizer(prediction).input_ids))
            console.print(f"[blue]Prompt:[/blue] {model_response.final_prompt}")
            console.print(f"[red]Prediction:[/red] {prediction}")
            if data[i].get("query") or data[i].get("sql"):
                console.print(
                    "[purple]Gold:[/purple] "
                    f"{data[i].get('query') or data[i].get('sql')}"
                )
            console.print("\n****\n")

    # Run the entire thing now - the to_print results will be in cache and fast
    generated_sqls = generate_sql(
        manifest=manifest,
        text_to_sql_in=text_to_sql_in,
        retrieved_docs=retrieved_docs,
        stop_tokens=stop_tokens,
        max_tokens=max_tokens,
        temperature=temperature,
        num_beams=num_beams,
        prompt_formatter=prompt_formatter,
        overwrite_manifest=overwrite_manifest,
        parallel=parallel,
    )

    with open(Path(output_dir) / output_filename, "w") as fout:
        for i, (prediction, model_response) in enumerate(generated_sqls):
            if isinstance(model_response.final_prompt, str):
                token_lengths.append(
                    len(tokenizer(model_response.final_prompt).input_ids)
                )
            else:
                for prompt in model_response.final_prompt:
                    token_lengths.append(len(tokenizer(prompt["content"]).input_ids))
            entry = {
                **original_data[i],
                "pred": prediction,
                "raw_pred": model_response.output,
                "raw_output": model_response.raw_output,
                "prompt": model_response.final_prompt,
                "tables": [tbl.dict() for tbl in text_to_sql_in[i].tables or []],
            }
            formatted_entry = data_formatter.format_output(entry)
            print(json.dumps(formatted_entry), file=fout)
    overflow = len([tl for tl in token_lengths if tl > 2048]) / len(token_lengths)
    console.print(f"Overflow 2048 prompt {100*overflow:.2f}%")
    console.print(f"Saved to {Path(output_dir) / output_filename}")


if __name__ == "__main__":
    cli()