Fabrice-TIERCELIN
commited on
Show the interface on CPU
Browse files- gradio_demo.py +25 -24
gradio_demo.py
CHANGED
@@ -31,32 +31,33 @@ server_ip = args.ip
|
|
31 |
server_port = args.port
|
32 |
use_llava = not args.no_llava
|
33 |
|
34 |
-
if torch.cuda.device_count()
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
# load SUPIR
|
45 |
-
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
|
46 |
-
if args.loading_half_params:
|
47 |
-
|
48 |
-
if args.use_tile_vae:
|
49 |
-
|
50 |
-
model = model.to(SUPIR_device)
|
51 |
-
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
|
52 |
-
model.current_model = 'v0-Q'
|
53 |
-
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
|
54 |
|
55 |
-
# load LLaVA
|
56 |
-
if use_llava:
|
57 |
-
|
58 |
-
else:
|
59 |
-
|
60 |
|
61 |
def stage1_process(input_image, gamma_correction):
|
62 |
if torch.cuda.device_count() == 0:
|
|
|
31 |
server_port = args.port
|
32 |
use_llava = not args.no_llava
|
33 |
|
34 |
+
if torch.cuda.device_count() > 0:
|
35 |
+
if torch.cuda.device_count() >= 2:
|
36 |
+
SUPIR_device = 'cuda:0'
|
37 |
+
LLaVA_device = 'cuda:1'
|
38 |
+
elif torch.cuda.device_count() == 1:
|
39 |
+
SUPIR_device = 'cuda:0'
|
40 |
+
LLaVA_device = 'cuda:0'
|
41 |
+
else:
|
42 |
+
SUPIR_device = 'cpu'
|
43 |
+
LLaVA_device = 'cpu'
|
44 |
|
45 |
+
# load SUPIR
|
46 |
+
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
|
47 |
+
if args.loading_half_params:
|
48 |
+
model = model.half()
|
49 |
+
if args.use_tile_vae:
|
50 |
+
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
|
51 |
+
model = model.to(SUPIR_device)
|
52 |
+
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
|
53 |
+
model.current_model = 'v0-Q'
|
54 |
+
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
|
55 |
|
56 |
+
# load LLaVA
|
57 |
+
if use_llava:
|
58 |
+
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
|
59 |
+
else:
|
60 |
+
llava_agent = None
|
61 |
|
62 |
def stage1_process(input_image, gamma_correction):
|
63 |
if torch.cuda.device_count() == 0:
|