Fabrice-TIERCELIN
commited on
Seed
Browse files- gradio_demo.py +30 -15
gradio_demo.py
CHANGED
@@ -65,10 +65,18 @@ if torch.cuda.device_count() > 0:
|
|
65 |
else:
|
66 |
llava_agent = None
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
def check(input_image):
|
69 |
if input_image is None:
|
70 |
raise gr.Error("Please provide an image to restore.")
|
71 |
|
|
|
|
|
|
|
72 |
@spaces.GPU(duration=180)
|
73 |
def stage1_process(input_image, gamma_correction):
|
74 |
print('Start stage1_process')
|
@@ -114,7 +122,7 @@ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale
|
|
114 |
print('Start stage2_process')
|
115 |
if torch.cuda.device_count() == 0:
|
116 |
gr.Warning('Set this space to GPU config to make it work.')
|
117 |
-
return None, None
|
118 |
torch.cuda.set_device(SUPIR_device)
|
119 |
event_id = str(time.time_ns())
|
120 |
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
|
@@ -169,7 +177,7 @@ def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale
|
|
169 |
for i, result in enumerate(results):
|
170 |
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
171 |
print('End stage2_process')
|
172 |
-
return [input_image] + results, event_id
|
173 |
|
174 |
def load_and_reset(param_setting):
|
175 |
print('Start load_and_reset')
|
@@ -231,10 +239,10 @@ else:
|
|
231 |
title_md = """
|
232 |
<h1><center>SUPIR Image Upscaler</center></h1>
|
233 |
|
234 |
-
SUPIR is a practicing model scaling for photo-realistic image restoration. It is still a research project under tested and is not yet a stable commercial product.
|
235 |
|
236 |
-
<a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a>
|
237 |
-
<p style="background-color: blue;">
|
238 |
"""
|
239 |
|
240 |
|
@@ -249,7 +257,7 @@ The service is a research preview intended for non-commercial use only, subject
|
|
249 |
"""
|
250 |
|
251 |
# Gradio interface
|
252 |
-
with gr.Blocks(title=
|
253 |
with gr.Row():
|
254 |
gr.HTML(title_md)
|
255 |
|
@@ -275,13 +283,14 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
275 |
with gr.Accordion("Restoring options", open=False):
|
276 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results; I discourage to increase because the process is limited to 3 min", minimum=1, maximum=4 if not args.use_image_slider else 1
|
277 |
, value=1, step=1)
|
278 |
-
upscale = gr.Slider(label="Upscale", info="
|
279 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
280 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
281 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
282 |
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
|
283 |
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
284 |
-
|
|
|
285 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
286 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
287 |
a_prompt = gr.Textbox(label="Default Positive Prompt",
|
@@ -329,9 +338,9 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
329 |
result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
|
330 |
with gr.Row():
|
331 |
with gr.Column():
|
332 |
-
denoise_button = gr.Button(value="Pre-denoise
|
333 |
with gr.Column():
|
334 |
-
llave_button = gr.Button(value="Generate description by LlaVa (
|
335 |
with gr.Column():
|
336 |
diffusion_button = gr.Button(value="🚀 Restore", variant = "primary")
|
337 |
with gr.Row():
|
@@ -369,9 +378,17 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
369 |
prompt
|
370 |
])
|
371 |
|
372 |
-
diffusion_button.click(fn =
|
|
|
|
|
|
|
|
|
|
|
373 |
input_image
|
374 |
-
], outputs = [], queue = False, show_progress = False).
|
|
|
|
|
|
|
375 |
input_image,
|
376 |
prompt,
|
377 |
a_prompt,
|
@@ -396,9 +413,7 @@ with gr.Blocks(title='SUPIR') as interface:
|
|
396 |
model_select
|
397 |
], outputs = [
|
398 |
result_gallery,
|
399 |
-
event_id
|
400 |
-
fb_score,
|
401 |
-
fb_text
|
402 |
])
|
403 |
|
404 |
restart_button.click(fn = load_and_reset, inputs = [
|
|
|
65 |
else:
|
66 |
llava_agent = None
|
67 |
|
68 |
+
def update_seed(is_randomize_seed, seed):
|
69 |
+
if is_randomize_seed:
|
70 |
+
return random.randint(0, max_64_bit_int)
|
71 |
+
return seed
|
72 |
+
|
73 |
def check(input_image):
|
74 |
if input_image is None:
|
75 |
raise gr.Error("Please provide an image to restore.")
|
76 |
|
77 |
+
def reset_feedback():
|
78 |
+
return 3, ''
|
79 |
+
|
80 |
@spaces.GPU(duration=180)
|
81 |
def stage1_process(input_image, gamma_correction):
|
82 |
print('Start stage1_process')
|
|
|
122 |
print('Start stage2_process')
|
123 |
if torch.cuda.device_count() == 0:
|
124 |
gr.Warning('Set this space to GPU config to make it work.')
|
125 |
+
return None, None
|
126 |
torch.cuda.set_device(SUPIR_device)
|
127 |
event_id = str(time.time_ns())
|
128 |
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
|
|
|
177 |
for i, result in enumerate(results):
|
178 |
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
179 |
print('End stage2_process')
|
180 |
+
return [input_image] + results, event_id
|
181 |
|
182 |
def load_and_reset(param_setting):
|
183 |
print('Start load_and_reset')
|
|
|
239 |
title_md = """
|
240 |
<h1><center>SUPIR Image Upscaler</center></h1>
|
241 |
|
242 |
+
<p>SUPIR is a practicing model scaling for photo-realistic image restoration. It is still a research project under tested and is not yet a stable commercial product.
|
243 |
|
244 |
+
<a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></p>
|
245 |
+
<p style="background-color: blue;">LLaVa is disabled.</p>
|
246 |
"""
|
247 |
|
248 |
|
|
|
257 |
"""
|
258 |
|
259 |
# Gradio interface
|
260 |
+
with gr.Blocks(title="SUPIR") as interface:
|
261 |
with gr.Row():
|
262 |
gr.HTML(title_md)
|
263 |
|
|
|
283 |
with gr.Accordion("Restoring options", open=False):
|
284 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results; I discourage to increase because the process is limited to 3 min", minimum=1, maximum=4 if not args.use_image_slider else 1
|
285 |
, value=1, step=1)
|
286 |
+
upscale = gr.Slider(label="Upscale factor", info="Resolution x1, x2, x3, x4, x5, x6, x7 or x8", minimum=1, maximum=8, value=1, step=1)
|
287 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
288 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
289 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
290 |
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
|
291 |
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
292 |
+
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
293 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
294 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
295 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
296 |
a_prompt = gr.Textbox(label="Default Positive Prompt",
|
|
|
338 |
result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
|
339 |
with gr.Row():
|
340 |
with gr.Column():
|
341 |
+
denoise_button = gr.Button(value="Pre-denoise")
|
342 |
with gr.Column():
|
343 |
+
llave_button = gr.Button(value="Generate description by LlaVa (disabled)")
|
344 |
with gr.Column():
|
345 |
diffusion_button = gr.Button(value="🚀 Restore", variant = "primary")
|
346 |
with gr.Row():
|
|
|
378 |
prompt
|
379 |
])
|
380 |
|
381 |
+
diffusion_button.click(fn = update_seed, inputs = [
|
382 |
+
randomize_seed,
|
383 |
+
seed
|
384 |
+
], outputs = [
|
385 |
+
seed
|
386 |
+
], queue = False, show_progress = False).then(fn = check, inputs = [
|
387 |
input_image
|
388 |
+
], outputs = [], queue = False, show_progress = False).then(fn = reset_feedback, inputs = [], outputs = [
|
389 |
+
fb_score,
|
390 |
+
fb_text
|
391 |
+
], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
|
392 |
input_image,
|
393 |
prompt,
|
394 |
a_prompt,
|
|
|
413 |
model_select
|
414 |
], outputs = [
|
415 |
result_gallery,
|
416 |
+
event_id
|
|
|
|
|
417 |
])
|
418 |
|
419 |
restart_button.click(fn = load_and_reset, inputs = [
|