Fabrice-TIERCELIN commited on
Commit
540299d
·
verified ·
1 Parent(s): 820617f

Delete GenVideo_app.py

Browse files
Files changed (1) hide show
  1. GenVideo_app.py +0 -158
GenVideo_app.py DELETED
@@ -1,158 +0,0 @@
1
- import os
2
-
3
- import gradio as gr
4
- from gradio_imageslider import ImageSlider
5
- import argparse
6
- from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
7
- import numpy as np
8
- import torch
9
- from SUPIR.util import create_SUPIR_model, load_QF_ckpt
10
- from PIL import Image
11
- from llava.llava_agent import LLavaAgent
12
- from CKPT_PTH import LLAVA_MODEL_PATH
13
- import einops
14
- import copy
15
- import time
16
- import spaces
17
- from huggingface_hub import hf_hub_download
18
-
19
- from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
20
- from diffusers.utils import export_to_gif
21
- from diffusers.utils import export_to_video
22
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
23
- import uuid
24
-
25
- hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
26
- hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
27
- hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
28
- hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
29
- hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
30
-
31
- parser = argparse.ArgumentParser()
32
- parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
33
- parser.add_argument("--ip", type=str, default='127.0.0.1')
34
- parser.add_argument("--port", type=int, default='6688')
35
- parser.add_argument("--no_llava", action='store_true', default=False)
36
- parser.add_argument("--use_image_slider", action='store_true', default=False)
37
- parser.add_argument("--log_history", action='store_true', default=False)
38
- parser.add_argument("--loading_half_params", action='store_true', default=False)
39
- parser.add_argument("--use_tile_vae", action='store_true', default=False)
40
- parser.add_argument("--encoder_tile_size", type=int, default=512)
41
- parser.add_argument("--decoder_tile_size", type=int, default=64)
42
- parser.add_argument("--load_8bit_llava", action='store_true', default=False)
43
- args = parser.parse_args()
44
- server_ip = args.ip
45
- server_port = args.port
46
- use_llava = not args.no_llava
47
-
48
- if torch.cuda.device_count() > 0:
49
- if torch.cuda.device_count() >= 2:
50
- SUPIR_device = 'cuda:0'
51
- LLaVA_device = 'cuda:1'
52
- elif torch.cuda.device_count() == 1:
53
- SUPIR_device = 'cuda:0'
54
- LLaVA_device = 'cuda:0'
55
- else:
56
- SUPIR_device = 'cpu'
57
- LLaVA_device = 'cpu'
58
-
59
- # load SUPIR
60
- model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
61
- if args.loading_half_params:
62
- model = model.half()
63
- if args.use_tile_vae:
64
- model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
65
- model = model.to(SUPIR_device)
66
- model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
67
- model.current_model = 'v0-Q'
68
- ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
69
-
70
- # load LLaVA
71
- #if use_llava:
72
- #llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
73
- #else:
74
- #llava_agent = None
75
-
76
-
77
- # Available adapters (replace with your actual adapter names)
78
- adapter_options = {
79
- "zoom-out":"guoyww/animatediff-motion-lora-zoom-out",
80
- "zoom-in":"guoyww/animatediff-motion-lora-zoom-in",
81
- "pan-left":"guoyww/animatediff-motion-lora-pan-left",
82
- "pan-right":"guoyww/animatediff-motion-lora-pan-right",
83
- "roll-clockwise":"guoyww/animatediff-motion-lora-rolling-clockwise",
84
- "roll-anticlockwise":"guoyww/animatediff-motion-lora-rolling-anticlockwise",
85
- "tilt-up":"guoyww/animatediff-motion-lora-tilt-up",
86
- "tilt-down":"guoyww/animatediff-motion-lora-tilt-down"
87
- }
88
-
89
- def load_cached_examples():
90
- examples = [
91
- ["a cat playing with a ball of yarn", "blurry", 7.5, 12, ["zoom-in"]],
92
- ["a dog running in a field", "dark, indoors", 8.0, 8, ["pan-left", "tilt-up"]],
93
- ]
94
- return examples
95
-
96
- device = "cuda"
97
- adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
98
- model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
99
-
100
- pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to(device)
101
- scheduler = DDIMScheduler.from_pretrained(
102
- model_id,
103
- subfolder="scheduler",
104
- clip_sample=False,
105
- timestep_spacing="linspace",
106
- beta_schedule="linear",
107
- steps_offset=1,
108
- )
109
- pipe.scheduler = scheduler
110
-
111
- @spaces.GPU
112
- def generate_video(prompt,negative_prompt, guidance_scale, num_inference_steps, adapter_choices):
113
-
114
- pipe.to(device)
115
-
116
- # Set adapters based on user selection
117
- if adapter_choices:
118
- for i in range(len(adapter_choices)):
119
- adapter_name = adapter_choices[i]
120
- pipe.load_lora_weights(
121
- adapter_options[adapter_name], adapter_name=adapter_name,
122
- )
123
- pipe.set_adapters(adapter_choices, adapter_weights=[1.0] * len(adapter_choices))
124
- print(adapter_choices)
125
-
126
- output = pipe(
127
- prompt=prompt,
128
- negative_prompt=negative_prompt,
129
- num_frames=16,
130
- guidance_scale=guidance_scale,
131
- num_inference_steps=num_inference_steps,
132
- )
133
- name = str(uuid.uuid4()).replace("-", "")
134
- path = f"/tmp/{name}.mp4"
135
- export_to_video(output.frames[0], path, fps=10)
136
- return path
137
-
138
-
139
-
140
- iface = gr.Interface(
141
- theme=gr.themes.Soft(primary_hue="cyan", secondary_hue="teal"),
142
- fn=generate_video,
143
- inputs=[
144
- gr.Textbox(label="Prompt"),
145
- gr.Textbox(label="Negative Prompt"),
146
- gr.Slider(minimum=0.5, maximum=10, value=7.5, label="Guidance Scale"),
147
- gr.Slider(minimum=4, maximum=24, step=4, value=4, label="Inference Steps"),
148
- gr.CheckboxGroup(adapter_options.keys(), label="Adapter Choice",type='value'),
149
- ],
150
- outputs=gr.Video(label="Generated Video"),
151
- examples = [
152
- ["Urban ambiance, man walking, neon lights, rain, wet floor, high quality", "bad quality", 7.5, 24, []],
153
- ["Nature, farms, mountains in background, drone shot, high quality","bad quality" ,8.0, 24, []],
154
- ],
155
- cache_examples=True
156
- )
157
-
158
- iface.launch()