Fabrice-TIERCELIN
commited on
log_information
Browse files- gradio_demo.py +71 -70
gradio_demo.py
CHANGED
@@ -147,124 +147,113 @@ def stage2_process(
|
|
147 |
output_format,
|
148 |
allocation
|
149 |
):
|
150 |
-
print('allocation')
|
151 |
-
print(allocation)
|
152 |
if allocation == 1:
|
153 |
return restore_in_1min(
|
154 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
155 |
)
|
156 |
if allocation == 2:
|
157 |
return restore_in_2min(
|
158 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
159 |
)
|
160 |
if allocation == 3:
|
161 |
return restore_in_3min(
|
162 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
163 |
)
|
164 |
if allocation == 4:
|
165 |
return restore_in_4min(
|
166 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
167 |
)
|
168 |
if allocation == 5:
|
169 |
return restore_in_5min(
|
170 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
171 |
)
|
172 |
if allocation == 7:
|
173 |
return restore_in_7min(
|
174 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
175 |
)
|
176 |
if allocation == 8:
|
177 |
return restore_in_8min(
|
178 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
179 |
)
|
180 |
if allocation == 9:
|
181 |
return restore_in_9min(
|
182 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
183 |
)
|
184 |
else:
|
185 |
return restore_in_6min(
|
186 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
187 |
)
|
188 |
|
189 |
@spaces.GPU(duration=60)
|
190 |
def restore_in_1min(
|
191 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
192 |
):
|
193 |
-
print('1 min')
|
194 |
return restore(
|
195 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
196 |
)
|
197 |
|
198 |
@spaces.GPU(duration=120)
|
199 |
def restore_in_2min(
|
200 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
201 |
):
|
202 |
-
print('2 min')
|
203 |
return restore(
|
204 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
205 |
)
|
206 |
|
207 |
@spaces.GPU(duration=180)
|
208 |
def restore_in_3min(
|
209 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
210 |
):
|
211 |
-
print('3 min')
|
212 |
return restore(
|
213 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
214 |
)
|
215 |
|
216 |
@spaces.GPU(duration=240)
|
217 |
def restore_in_4min(
|
218 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
219 |
):
|
220 |
-
print('4 min')
|
221 |
return restore(
|
222 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
223 |
)
|
224 |
|
225 |
@spaces.GPU(duration=300)
|
226 |
def restore_in_5min(
|
227 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
228 |
):
|
229 |
-
print('5 min')
|
230 |
return restore(
|
231 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
232 |
)
|
233 |
|
234 |
@spaces.GPU(duration=360)
|
235 |
def restore_in_6min(
|
236 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
237 |
):
|
238 |
-
print('6 min')
|
239 |
return restore(
|
240 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
241 |
)
|
242 |
|
243 |
@spaces.GPU(duration=420)
|
244 |
def restore_in_7min(
|
245 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
246 |
):
|
247 |
-
print('7 min')
|
248 |
return restore(
|
249 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
250 |
)
|
251 |
|
252 |
@spaces.GPU(duration=480)
|
253 |
def restore_in_8min(
|
254 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
255 |
):
|
256 |
-
print('8 min')
|
257 |
return restore(
|
258 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
259 |
)
|
260 |
|
261 |
@spaces.GPU(duration=540)
|
262 |
def restore_in_9min(
|
263 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
264 |
):
|
265 |
-
print('9 min')
|
266 |
return restore(
|
267 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format
|
268 |
)
|
269 |
|
270 |
def restore(
|
@@ -294,45 +283,50 @@ def restore(
|
|
294 |
spt_linear_CFG,
|
295 |
spt_linear_s_stage2,
|
296 |
model_select,
|
297 |
-
output_format
|
|
|
298 |
):
|
299 |
start = time.time()
|
300 |
print('stage2_process ==>>')
|
301 |
-
print(noisy_image)
|
302 |
-
print(denoise_image)
|
303 |
-
print(prompt)
|
304 |
-
print(a_prompt)
|
305 |
-
print(n_prompt)
|
306 |
-
print(num_samples)
|
307 |
-
print(min_size)
|
308 |
-
print(downscale)
|
309 |
-
print(upscale)
|
310 |
-
print(edm_steps)
|
311 |
-
print(s_stage1)
|
312 |
-
print(s_stage2)
|
313 |
-
print(s_cfg)
|
314 |
-
print(randomize_seed)
|
315 |
-
print(seed)
|
316 |
-
print(s_churn)
|
317 |
-
print(s_noise)
|
318 |
-
print(color_fix_type)
|
319 |
-
print(diff_dtype)
|
320 |
-
print(ae_dtype)
|
321 |
-
print(gamma_correction)
|
322 |
-
print(linear_CFG)
|
323 |
-
print(linear_s_stage2)
|
324 |
-
print(spt_linear_CFG)
|
325 |
-
print(spt_linear_s_stage2)
|
326 |
-
print(model_select)
|
327 |
-
print(output_format)
|
|
|
|
|
328 |
if torch.cuda.device_count() == 0:
|
329 |
gr.Warning('Set this space to GPU config to make it work.')
|
330 |
return None, None, None, None
|
|
|
331 |
if output_format == "input":
|
332 |
if noisy_image is None:
|
333 |
output_format = "png"
|
334 |
else:
|
335 |
output_format = noisy_image.format
|
|
|
336 |
input_image = noisy_image if denoise_image is None else denoise_image
|
337 |
if 1 < downscale:
|
338 |
input_height, input_width, input_channel = np.array(input_image).shape
|
@@ -402,7 +396,7 @@ def restore(
|
|
402 |
hours = math.floor(minutes / 60)
|
403 |
minutes = minutes - (hours * 60)
|
404 |
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
405 |
-
"Wait
|
406 |
"The image(s) has(ve) been generated in " + \
|
407 |
((str(hours) + " h, ") if hours != 0 else "") + \
|
408 |
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
@@ -450,10 +444,14 @@ def load_and_reset(param_setting):
|
|
450 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
451 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
def on_select_result(result_gallery, evt: gr.SelectData):
|
454 |
print('on_select_result')
|
455 |
-
print(result_gallery[0])
|
456 |
-
print(result_gallery[evt.index])
|
457 |
return [result_gallery[0][0], result_gallery[evt.index][0]]
|
458 |
|
459 |
def submit_feedback(event_id, fb_score, fb_text):
|
@@ -480,6 +478,7 @@ title_html = """
|
|
480 |
The aim of SUPIR is the beauty and the illustration.
|
481 |
Most of the processes only last few minutes.
|
482 |
This demo can handle huge images but the process will be aborted if it lasts more than 9 min.
|
|
|
483 |
|
484 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
485 |
"""
|
@@ -765,7 +764,9 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
765 |
result_gallery,
|
766 |
restore_information,
|
767 |
event_id
|
768 |
-
])
|
|
|
|
|
769 |
|
770 |
result_gallery.select(on_select_result, result_gallery, result_slider)
|
771 |
|
|
|
147 |
output_format,
|
148 |
allocation
|
149 |
):
|
|
|
|
|
150 |
if allocation == 1:
|
151 |
return restore_in_1min(
|
152 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
153 |
)
|
154 |
if allocation == 2:
|
155 |
return restore_in_2min(
|
156 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
157 |
)
|
158 |
if allocation == 3:
|
159 |
return restore_in_3min(
|
160 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
161 |
)
|
162 |
if allocation == 4:
|
163 |
return restore_in_4min(
|
164 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
165 |
)
|
166 |
if allocation == 5:
|
167 |
return restore_in_5min(
|
168 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
169 |
)
|
170 |
if allocation == 7:
|
171 |
return restore_in_7min(
|
172 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
173 |
)
|
174 |
if allocation == 8:
|
175 |
return restore_in_8min(
|
176 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
177 |
)
|
178 |
if allocation == 9:
|
179 |
return restore_in_9min(
|
180 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
181 |
)
|
182 |
else:
|
183 |
return restore_in_6min(
|
184 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
185 |
)
|
186 |
|
187 |
@spaces.GPU(duration=60)
|
188 |
def restore_in_1min(
|
189 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
190 |
):
|
|
|
191 |
return restore(
|
192 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
193 |
)
|
194 |
|
195 |
@spaces.GPU(duration=120)
|
196 |
def restore_in_2min(
|
197 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
198 |
):
|
|
|
199 |
return restore(
|
200 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
201 |
)
|
202 |
|
203 |
@spaces.GPU(duration=180)
|
204 |
def restore_in_3min(
|
205 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
206 |
):
|
|
|
207 |
return restore(
|
208 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
209 |
)
|
210 |
|
211 |
@spaces.GPU(duration=240)
|
212 |
def restore_in_4min(
|
213 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
214 |
):
|
|
|
215 |
return restore(
|
216 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
217 |
)
|
218 |
|
219 |
@spaces.GPU(duration=300)
|
220 |
def restore_in_5min(
|
221 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
222 |
):
|
|
|
223 |
return restore(
|
224 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
225 |
)
|
226 |
|
227 |
@spaces.GPU(duration=360)
|
228 |
def restore_in_6min(
|
229 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
230 |
):
|
|
|
231 |
return restore(
|
232 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
233 |
)
|
234 |
|
235 |
@spaces.GPU(duration=420)
|
236 |
def restore_in_7min(
|
237 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
238 |
):
|
|
|
239 |
return restore(
|
240 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
241 |
)
|
242 |
|
243 |
@spaces.GPU(duration=480)
|
244 |
def restore_in_8min(
|
245 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
246 |
):
|
|
|
247 |
return restore(
|
248 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
249 |
)
|
250 |
|
251 |
@spaces.GPU(duration=540)
|
252 |
def restore_in_9min(
|
253 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
254 |
):
|
|
|
255 |
return restore(
|
256 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
257 |
)
|
258 |
|
259 |
def restore(
|
|
|
283 |
spt_linear_CFG,
|
284 |
spt_linear_s_stage2,
|
285 |
model_select,
|
286 |
+
output_format,
|
287 |
+
allocation
|
288 |
):
|
289 |
start = time.time()
|
290 |
print('stage2_process ==>>')
|
291 |
+
print("noisy_image: " + str(noisy_image))
|
292 |
+
print("denoise_image: " + str(denoise_image))
|
293 |
+
print("prompt: " + str(prompt))
|
294 |
+
print("a_prompt: " + str(a_prompt))
|
295 |
+
print("n_prompt: " + str(n_prompt))
|
296 |
+
print("num_samples: " + str(num_samples))
|
297 |
+
print("min_size: " + str(min_size))
|
298 |
+
print("downscale: " + str(downscale))
|
299 |
+
print("upscale: " + str(upscale))
|
300 |
+
print("edm_steps: " + str(edm_steps))
|
301 |
+
print("s_stage1: " + str(s_stage1))
|
302 |
+
print("s_stage2: " + str(s_stage2))
|
303 |
+
print("s_cfg: " + str(s_cfg))
|
304 |
+
print("randomize_seed: " + str(randomize_seed))
|
305 |
+
print("seed: " + str(seed))
|
306 |
+
print("s_churn: " + str(s_churn))
|
307 |
+
print("s_noise: " + str(s_noise))
|
308 |
+
print("color_fix_type: " + str(color_fix_type))
|
309 |
+
print("diff_dtype: " + str(diff_dtype))
|
310 |
+
print("ae_dtype: " + str(ae_dtype))
|
311 |
+
print("gamma_correction: " + str(gamma_correction))
|
312 |
+
print("linear_CFG: " + str(linear_CFG))
|
313 |
+
print("linear_s_stage2: " + str(linear_s_stage2))
|
314 |
+
print("spt_linear_CFG: " + str(spt_linear_CFG))
|
315 |
+
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
|
316 |
+
print("model_select: " + str(model_select))
|
317 |
+
print("output_format: " + str(output_format))
|
318 |
+
print("GPU time allocation: " + str(allocation) + " min")
|
319 |
+
|
320 |
if torch.cuda.device_count() == 0:
|
321 |
gr.Warning('Set this space to GPU config to make it work.')
|
322 |
return None, None, None, None
|
323 |
+
|
324 |
if output_format == "input":
|
325 |
if noisy_image is None:
|
326 |
output_format = "png"
|
327 |
else:
|
328 |
output_format = noisy_image.format
|
329 |
+
|
330 |
input_image = noisy_image if denoise_image is None else denoise_image
|
331 |
if 1 < downscale:
|
332 |
input_height, input_width, input_channel = np.array(input_image).shape
|
|
|
396 |
hours = math.floor(minutes / 60)
|
397 |
minutes = minutes - (hours * 60)
|
398 |
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
399 |
+
"Wait " + str(allocation) + " min before a new run to avoid time penalty. " + \
|
400 |
"The image(s) has(ve) been generated in " + \
|
401 |
((str(hours) + " h, ") if hours != 0 else "") + \
|
402 |
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
|
|
444 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
445 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
446 |
|
447 |
+
def log_information(result_gallery):
|
448 |
+
print('log_information')
|
449 |
+
if result_gallery is not None:
|
450 |
+
for i, result in enumerate(result_gallery):
|
451 |
+
print(result[0][0])
|
452 |
+
|
453 |
def on_select_result(result_gallery, evt: gr.SelectData):
|
454 |
print('on_select_result')
|
|
|
|
|
455 |
return [result_gallery[0][0], result_gallery[evt.index][0]]
|
456 |
|
457 |
def submit_feedback(event_id, fb_score, fb_text):
|
|
|
478 |
The aim of SUPIR is the beauty and the illustration.
|
479 |
Most of the processes only last few minutes.
|
480 |
This demo can handle huge images but the process will be aborted if it lasts more than 9 min.
|
481 |
+
Please leave a message in discussion if you encounter issues.
|
482 |
|
483 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
484 |
"""
|
|
|
764 |
result_gallery,
|
765 |
restore_information,
|
766 |
event_id
|
767 |
+
]).success(fn = log_information, inputs = [
|
768 |
+
result_gallery
|
769 |
+
], outputs = [], queue = False, show_progress = False)
|
770 |
|
771 |
result_gallery.select(on_select_result, result_gallery, result_slider)
|
772 |
|