Fabrice-TIERCELIN
commited on
Add labels for radio buttons
Browse files- gradio_demo.py +16 -16
gradio_demo.py
CHANGED
@@ -79,9 +79,9 @@ def check(input_image):
|
|
79 |
def reset_feedback():
|
80 |
return 3, ''
|
81 |
|
82 |
-
@spaces.GPU(duration=
|
83 |
def stage1_process(input_image, gamma_correction):
|
84 |
-
print('
|
85 |
if torch.cuda.device_count() == 0:
|
86 |
gr.Warning('Set this space to GPU config to make it work.')
|
87 |
return None, None
|
@@ -98,12 +98,12 @@ def stage1_process(input_image, gamma_correction):
|
|
98 |
LQ = np.power(LQ, gamma_correction)
|
99 |
LQ *= 255.0
|
100 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
101 |
-
print('
|
102 |
return LQ, gr.update(visible = True)
|
103 |
|
104 |
-
@spaces.GPU(duration=
|
105 |
def llave_process(input_image, temperature, top_p, qs=None):
|
106 |
-
print('
|
107 |
if torch.cuda.device_count() == 0:
|
108 |
gr.Warning('Set this space to GPU config to make it work.')
|
109 |
return 'Set this space to GPU config to make it work.'
|
@@ -114,10 +114,10 @@ def llave_process(input_image, temperature, top_p, qs=None):
|
|
114 |
captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
|
115 |
else:
|
116 |
captions = ['LLaVA is not available. Please add text manually.']
|
117 |
-
print('
|
118 |
return captions[0]
|
119 |
|
120 |
-
@spaces.GPU(duration=
|
121 |
def stage2_process(
|
122 |
noisy_image,
|
123 |
denoise_image,
|
@@ -148,7 +148,7 @@ def stage2_process(
|
|
148 |
output_format
|
149 |
):
|
150 |
start = time.time()
|
151 |
-
print('
|
152 |
if torch.cuda.device_count() == 0:
|
153 |
gr.Warning('Set this space to GPU config to make it work.')
|
154 |
return None, None, None
|
@@ -213,7 +213,7 @@ def stage2_process(
|
|
213 |
# All the results have the same size
|
214 |
result_height, result_width, result_channel = np.array(results[0]).shape
|
215 |
|
216 |
-
print('
|
217 |
end = time.time()
|
218 |
secondes = int(end - start)
|
219 |
minutes = math.floor(secondes / 60)
|
@@ -234,7 +234,7 @@ def stage2_process(
|
|
234 |
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
235 |
|
236 |
def load_and_reset(param_setting):
|
237 |
-
print('
|
238 |
if torch.cuda.device_count() == 0:
|
239 |
gr.Warning('Set this space to GPU config to make it work.')
|
240 |
return None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
@@ -264,7 +264,7 @@ def load_and_reset(param_setting):
|
|
264 |
else:
|
265 |
raise NotImplementedError
|
266 |
gr.Info('The parameters are reset.')
|
267 |
-
print('
|
268 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
269 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
270 |
|
@@ -292,7 +292,7 @@ title_html = """
|
|
292 |
LlaVa is not integrated in this demo. The content added by SUPIR is imagination, not real-world information.
|
293 |
The aim of SUPIR is the beauty and the illustration.
|
294 |
Most of the processes only last few minutes.
|
295 |
-
This demo can handle huge images but the process will be aborted if it lasts more than
|
296 |
|
297 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
298 |
"""
|
@@ -327,7 +327,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
327 |
input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
|
328 |
with gr.Group():
|
329 |
prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
|
330 |
-
upscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
331 |
a_prompt = gr.Textbox(label="Image description",
|
332 |
info="Help the AI understand what the image represents; describe as much as possible",
|
333 |
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
@@ -336,7 +336,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
336 |
'hyper sharpness, perfect without deformations.',
|
337 |
lines=3)
|
338 |
a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
339 |
-
output_format = gr.Radio(["png", "webp", "jpeg", "gif", "bmp"], label="Image format for result", info="File extention", value="png", interactive=True)
|
340 |
|
341 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
342 |
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
@@ -361,10 +361,10 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
361 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
|
362 |
, value=1, step=1)
|
363 |
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
|
364 |
-
downscale = gr.Radio([1, 2, 3, 4, 5, 6, 7, 8], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
|
365 |
with gr.Row():
|
366 |
with gr.Column():
|
367 |
-
model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", info="
|
368 |
interactive=True)
|
369 |
with gr.Column():
|
370 |
color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
|
|
|
79 |
def reset_feedback():
|
80 |
return 3, ''
|
81 |
|
82 |
+
@spaces.GPU(duration=480)
|
83 |
def stage1_process(input_image, gamma_correction):
|
84 |
+
print('stage1_process ==>>')
|
85 |
if torch.cuda.device_count() == 0:
|
86 |
gr.Warning('Set this space to GPU config to make it work.')
|
87 |
return None, None
|
|
|
98 |
LQ = np.power(LQ, gamma_correction)
|
99 |
LQ *= 255.0
|
100 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
101 |
+
print('<<== stage1_process')
|
102 |
return LQ, gr.update(visible = True)
|
103 |
|
104 |
+
@spaces.GPU(duration=480)
|
105 |
def llave_process(input_image, temperature, top_p, qs=None):
|
106 |
+
print('llave_process ==>>')
|
107 |
if torch.cuda.device_count() == 0:
|
108 |
gr.Warning('Set this space to GPU config to make it work.')
|
109 |
return 'Set this space to GPU config to make it work.'
|
|
|
114 |
captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
|
115 |
else:
|
116 |
captions = ['LLaVA is not available. Please add text manually.']
|
117 |
+
print('<<== llave_process')
|
118 |
return captions[0]
|
119 |
|
120 |
+
@spaces.GPU(duration=480)
|
121 |
def stage2_process(
|
122 |
noisy_image,
|
123 |
denoise_image,
|
|
|
148 |
output_format
|
149 |
):
|
150 |
start = time.time()
|
151 |
+
print('stage2_process ==>>')
|
152 |
if torch.cuda.device_count() == 0:
|
153 |
gr.Warning('Set this space to GPU config to make it work.')
|
154 |
return None, None, None
|
|
|
213 |
# All the results have the same size
|
214 |
result_height, result_width, result_channel = np.array(results[0]).shape
|
215 |
|
216 |
+
print('<<== stage2_process')
|
217 |
end = time.time()
|
218 |
secondes = int(end - start)
|
219 |
minutes = math.floor(secondes / 60)
|
|
|
234 |
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
|
235 |
|
236 |
def load_and_reset(param_setting):
|
237 |
+
print('load_and_reset ==>>')
|
238 |
if torch.cuda.device_count() == 0:
|
239 |
gr.Warning('Set this space to GPU config to make it work.')
|
240 |
return None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
|
|
264 |
else:
|
265 |
raise NotImplementedError
|
266 |
gr.Info('The parameters are reset.')
|
267 |
+
print('<<== load_and_reset')
|
268 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
269 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
270 |
|
|
|
292 |
LlaVa is not integrated in this demo. The content added by SUPIR is imagination, not real-world information.
|
293 |
The aim of SUPIR is the beauty and the illustration.
|
294 |
Most of the processes only last few minutes.
|
295 |
+
This demo can handle huge images but the process will be aborted if it lasts more than 8 min.
|
296 |
|
297 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
298 |
"""
|
|
|
327 |
input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
|
328 |
with gr.Group():
|
329 |
prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
|
330 |
+
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
331 |
a_prompt = gr.Textbox(label="Image description",
|
332 |
info="Help the AI understand what the image represents; describe as much as possible",
|
333 |
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
|
|
336 |
'hyper sharpness, perfect without deformations.',
|
337 |
lines=3)
|
338 |
a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
339 |
+
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
340 |
|
341 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
342 |
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
|
|
361 |
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
|
362 |
, value=1, step=1)
|
363 |
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
|
364 |
+
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
|
365 |
with gr.Row():
|
366 |
with gr.Column():
|
367 |
+
model_select = gr.Radio([["💃 Quality", "v0-Q"], ["🎯 Fidelity", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
|
368 |
interactive=True)
|
369 |
with gr.Column():
|
370 |
color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
|