File size: 17,195 Bytes
e94a434
 
 
 
146f20f
 
 
e94a434
77ab4a2
e94a434
 
 
 
 
 
 
 
 
 
715fd06
abf23c4
4088f89
fbe27ae
 
e94a434
 
 
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
715fd06
e94a434
715fd06
 
 
 
 
 
 
 
2a21b24
 
 
 
 
715fd06
 
 
77ab4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ee191
77ab4a2
 
 
 
 
 
 
 
 
 
 
 
715fd06
 
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
 
 
 
 
ded4b0f
e94a434
 
 
 
d654c4d
 
 
 
17a4569
 
 
 
d654c4d
 
 
 
f8a298b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
 
 
 
 
 
ea89f80
715fd06
e94a434
 
 
fbe27ae
 
 
 
 
 
c53190e
f00dc53
 
 
 
 
 
 
 
 
 
 
 
 
3e42172
edd31b5
 
 
c53190e
7a0cc67
715fd06
e94a434
715fd06
6706fde
715fd06
 
 
e94a434
fd765b6
 
9555c18
e94a434
715fd06
 
 
 
 
9555c18
715fd06
9555c18
715fd06
 
9e87bd5
 
 
 
 
9da6542
9e87bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea89f80
715fd06
e94a434
 
 
 
 
 
 
 
c53190e
f00dc53
 
 
 
 
 
 
 
 
 
9e87bd5
fbe27ae
deeaaa7
edd31b5
 
 
9e87bd5
deeaaa7
c53190e
e94a434
 
 
 
 
77ab4a2
 
715fd06
9e87bd5
 
deeaaa7
 
 
 
e57eb3d
edd31b5
 
 
 
 
 
 
 
 
 
 
e57eb3d
edd31b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f52434
e57eb3d
edd31b5
 
 
 
 
 
 
 
 
 
 
e57eb3d
edd31b5
 
 
9e87bd5
edd31b5
 
 
 
9e87bd5
edd31b5
 
 
 
9e87bd5
 
 
 
 
 
 
 
 
e94a434
 
 
001c01d
e94a434
001c01d
e94a434
d654c4d
c4232d6
617f6d5
bc59854
c4232d6
 
e94a434
 
 
715fd06
 
 
 
 
 
 
 
 
edd31b5
 
06b8325
715fd06
 
 
 
e94a434
 
 
 
 
715fd06
e94a434
 
 
715fd06
 
e94a434
 
 
abf23c4
 
 
 
 
 
 
 
 
 
715fd06
9e87bd5
edd31b5
9e87bd5
 
715fd06
abf23c4
e94a434
715fd06
 
 
edd31b5
 
06b8325
715fd06
 
 
 
e94a434
 
63c41d3
e94a434
 
 
 
715fd06
 
e94a434
 
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a298b
 
 
ff63648
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# coding=utf-8
# Copyright 2023 The GlotLID Authors.
# Lint as: python3


# This space is built based on AMR-KELEG/ALDi space.
# GlotLID Space

import string
import constants
import pandas as pd
import streamlit as st
from huggingface_hub import hf_hub_download
from GlotScript import get_script_predictor
import matplotlib.pyplot as plt
import fasttext
import altair as alt
from altair import X, Y, Scale
import base64
import json
import os
import re
import transformers
from transformers import pipeline

@st.cache_resource
def load_sp():
    sp = get_script_predictor()
    return sp


sp = load_sp()

def get_script(text):
    """Get the writing systems of given text.

    Args:
        text: The text to be preprocessed.

    Returns:
        The main script and list of all scripts.
    """
    res = sp(text)
    main_script = res[0] if res[0] else 'Zyyy'
    all_scripts_dict = res[2]['details']
    if all_scripts_dict:
        all_scripts = list(all_scripts_dict.keys())
    else:
        all_scripts = 'Zyyy'

    for ws in all_scripts:
        if ws in ['Kana', 'Hrkt', 'Hani', 'Hira']:
            all_scripts.append('Jpan')

    all_scripts = list(set(all_scripts))
    return main_script, all_scripts


def preprocess_text(text):
    """Apply preprocessing to the given text.
    Args:
        text: Thetext to be preprocessed.
    Returns:
        The preprocessed text.
    """

    # remove \n
    text = text.replace('\n', ' ')

    # get rid of characters that are ubiquitous
    replace_by = " " 
    replacement_map = {
        ord(c): replace_by
        for c in ':•#{|}' + string.digits
    }
    text = text.translate(replacement_map)

    # make multiple space one space
    text = re.sub(r'\s+', ' ', text)

    # strip the text
    text = text.strip()

    return text


@st.cache_data
def language_names(json_path):
    with open(json_path, 'r') as json_file:
        data = json.load(json_file)
    return data

label2name = language_names("assets/language_names.json")

def get_name(label):
    """Get the name of language from label"""
    iso_3 = label.split('_')[0]
    name = label2name[iso_3]
    return name


@st.cache_data
def render_svg(svg):
    """Renders the given svg string."""
    b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
    html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}", width="40%"/> </p>'
    c = st.container()
    c.write(html, unsafe_allow_html=True)


@st.cache_data
def render_metadata():
    """Renders the metadata."""
    html = r"""<p align="center">
        <a href="https://huggingface.co/dsfsi/za-lid"><img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-8A2BE2"></a>
        <a href="https://github.com/dsfsi/za-lid"><img alt="GitHub" src="https://img.shields.io/badge/%F0%9F%93%A6%20GitHub-orange"></a>
        <a href="https://github.com/dsfsi/za-lid/blob/main/LICENSE.md"><img alt="GitHub license" src="https://img.shields.io/github/dsfsi/za-lid?logoColor=blue"></a>
        <a href="https://github.com/dsfsi/za-lid"><img alt="GitHub stars" src="https://img.shields.io/github/dsfsi/za-lid"></a>
        </p>"""
    c = st.container()
    c.write(html, unsafe_allow_html=True)

@st.cache_data
def citation():
    """Renders the metadata."""
    _CITATION  = """
    @inproceedings{
      kargaran2023glotlid,
      title={GlotLID: Language Identification for Low-Resource Languages},
      author={Kargaran, Amir Hossein and Imani, Ayyoob and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich},
      booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing},
      year={2023},
      url={https://openreview.net/forum?id=dl4e3EBz5j}
    }"""
    st.code(_CITATION, language="python", line_numbers=False)


@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=None).encode("utf-8")


@st.cache_resource
def load_model(model_name, file_name):
    model_path = hf_hub_download(repo_id=model_name, filename=file_name)
    model = fasttext.load_model(model_path)
    return model

@st.cache_resource
def load_model_pipeline(model_name, file_name):
    model = pipeline("text-classification", model=model_name)
    return model
    


# model_1 = load_model(constants.MODEL_NAME, "model_v1.bin")
# model_2 = load_model(constants.MODEL_NAME, "model_v2.bin")
# model_3 = load_model(constants.MODEL_NAME, "model_v3.bin")
# openlid = load_model('laurievb/OpenLID', "model.bin")
# nllb = load_model('facebook/fasttext-language-identification', "model.bin")


# MODELS
model_xlmr_large = load_model_pipeline('dsfsi/za-xlmrlarge-lid', "model.bin")
model_serengeti = load_model_pipeline('dsfsi/za-serengeti-lid', "model.bin")
model_afriberta = load_model_pipeline('dsfsi/za-afriberta-lid', "model.bin")
model_afroxlmr_base = load_model_pipeline('dsfsi/za-afro-xlmr-base-lid', "model.bin")
model_afrolm        = load_model_pipeline('dsfsi/za-afrolm-lid', "model.bin")
za_lid = load_model_pipeline('dsfsi/za-lid-bert', "model.bin")
openlid = load_model('laurievb/OpenLID', "model.bin")
glotlid_3 = load_model(constants.MODEL_NAME, "model_v3.bin")


# @st.cache_resource
def plot(label, prob):

    ORANGE_COLOR = "#FF8000"
    BLACK_COLOR = "#31333F"
    fig, ax = plt.subplots(figsize=(8, 1))
    fig.patch.set_facecolor("none")
    ax.set_facecolor("none")

    ax.spines["left"].set_color(BLACK_COLOR)
    ax.spines["bottom"].set_color(BLACK_COLOR)
    ax.tick_params(axis="x", colors=BLACK_COLOR)

    ax.spines[["right", "top"]].set_visible(False)

    ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
    ax.set_xlim(0, 1)
    ax.set_ylim(-1, 1)
    ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=BLACK_COLOR)
    ax.get_yaxis().set_visible(False)
    ax.set_xlabel("Confidence", color=BLACK_COLOR)
    st.pyplot(fig)

# @st.cache_resource
def plot_multiples(models, labels, probs):
    ORANGE_COLOR = "#FF8000"
    BLACK_COLOR = "#31333F"
    
    fig, ax = plt.subplots(figsize=(12, len(models)))
    fig.patch.set_facecolor("none")
    ax.set_facecolor("none")

    ax.spines["left"].set_color(BLACK_COLOR)
    ax.spines["bottom"].set_color(BLACK_COLOR)
    ax.tick_params(axis="x", colors=BLACK_COLOR)

    ax.spines[["right", "top"]].set_visible(False)

    # Plot bars for each model, label, and probability
    y_positions = range(len(models))  # Y positions for each model

    ax.barh(y=y_positions, width=probs, color=ORANGE_COLOR)

    # Add labels next to each bar
    for i, (prob, label) in enumerate(zip(probs, labels)):
        ax.text(prob + 0.01, i, f"{label} ({prob:.2f})", va='center', color=BLACK_COLOR)

    # Set y-ticks and labels
    ax.set_yticks(y_positions)
    ax.set_yticklabels(models, color=BLACK_COLOR)
    
    ax.set_xlim(0, 1)
    ax.set_xlabel("Confidence", color=BLACK_COLOR)
    ax.set_title("Model Predictions", color=BLACK_COLOR)

    st.pyplot(fig)
    

def compute(sentences, version = 'v3'):
    """Computes the language probablities and labels for the given sentences.

    Args:
        sentences: A list of sentences.

    Returns:
        A list of language probablities and labels for the given sentences.
    """
    progress_text = "Computing Language..."

    if version == 'xlmrlarge':
        model_choice = model_xlmr_large
    elif version == 'serengeti':
        model_choice = model_serengeti
    elif version == 'afriberta':
        model_choice = model_afriberta   
    elif version == 'afroxlmrbase':
        model_choice = model_afroxlmr_base
    elif version=='afrolm':
        model_choice = model_afrolm
    elif version == 'BERT':
        model_choice = za_lid
    elif version == 'openlid-201':
        model_choice = openlid
    elif version == 'GlotLID v3':
          model_choice = glotlid_3
    else:
         model_choice = [(model_xlmr_large, "xlmrlarge"),(model_serengeti,"serengeti"), (model_afriberta,"afriberta"), (model_afroxlmr_base,"afroxlmrbase"), (model_afrolm,"afrolm"), (za_lid,"BERT"), (openlid,"openlid-201"),  (glotlid_3,"GlotLID v3")]
        
    my_bar = st.progress(0, text=progress_text)

    probs = []
    labels = []

    sentences = [preprocess_text(sent) for sent in sentences]
    
    for index, sent in enumerate(sentences):
        if type(model_choice) == list:
                 all_models_pred = []
                 for model_version in model_choice:
                            m_version = model_version[1]
                            model     = model_version[0]
                            if m_version not in  ["openlid-201", "GlotLID v3"]:
                                    output = model.predict(sent)
                                    output_label = output[index]['label']
                                    output_prob =  output[index]['score']
                                    output_label_language = output[index]['label']
                                    labels = labels + [output_label]
                                    probs = probs + [output_prob]
                            
                                    my_bar.progress(
                                        min((index) / len(sentences), 1),
                                        text=progress_text,
                                    )
                            else:    
                                    output = model.predict(sent)
                                    output_label  = output[0][0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani')
                                    output_prob = max(min(output[1][0], 1), 0) 
                                    output_label_language = output_label.split('_')[0]
                            
                                    # script control
                                    if version in ['GlotLID v3', 'openlid-201', 'nllb-218'] and output_label_language!= 'zxx':
                                        main_script, all_scripts = get_script(sent)
                                        output_label_script = output_label.split('_')[1]
                            
                                        if output_label_script not in all_scripts:
                                            output_label_script = main_script
                                            output_label = f"und_{output_label_script}"
                                            output_prob = 0
                            
                                
                                    labels = labels + [output_label]
                                    probs = probs + [output_prob]
                            
                                    my_bar.progress(
                                        min((index) / len(sentences), 1),
                                        text=progress_text,
                                    )
                        
        else:    
                if version not in ["openlid-201", "GlotLID v3"]:
                        output = model_choice.predict(sent)
                        output_label = output[index]['label']
                        output_prob =  output[index]['score']
                        output_label_language = output[index]['label']
                        labels = labels + [output_label]
                        probs = probs + [output_prob]
                    
                        my_bar.progress(
                                min((index) / len(sentences), 1),
                                text=progress_text,
                            )
                else:
                            output = model_choice.predict(sent)
                            output_label  = output[0][0].split('__')[-1].replace('_Hans', '_Hani').replace('_Hant', '_Hani')
                            output_prob = max(min(output[1][0], 1), 0) 
                            output_label_language = output_label.split('_')[0]
                    
                            # script control
                            if version in ['GlotLID v3', 'openlid-201', 'nllb-218'] and output_label_language!= 'zxx':
                                main_script, all_scripts = get_script(sent)
                                output_label_script = output_label.split('_')[1]
                    
                                if output_label_script not in all_scripts:
                                    output_label_script = main_script
                                    output_label = f"und_{output_label_script}"
                                    output_prob = 0
                    
                        
                            labels = labels + [output_label]
                            probs = probs + [output_prob]
                    
                            my_bar.progress(
                                min((index) / len(sentences), 1),
                                text=progress_text,
                )
    my_bar.empty()
    return probs, labels

#  st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)")

#  render_svg(open("assets/glotlid_logo.svg").read())

render_metadata()

st.markdown("**DSFSI** Language Identification (LID) Inference Endpoint Created with **HuggingFace Spaces**.")



tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])

with tab1:
    
    # choice = st.radio(
    #     "Set granularity level",
    #     ["default", "merge", "individual"],
    #     captions=["enable both macrolanguage and its varieties (default)", "merge macrolanguage and its varieties into one label", "remove macrolanguages - only shows individual langauges"],
    # )

    version = st.radio(
        "Choose model",
        ["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT", "openlid-201", "GlotLID v3", "All-Models"],
        captions=["za-XLMR-Large", "za-Serengeti", "za-AfriBERTa", "za-Afro-XLMR-BASE", "za-AfroLM", "za-BERT", "OpenLID", "GlotLID v3",'All-Models'],
        index = 4,
        key = 'version_tab1',
        horizontal = True
    )
    
    sent = st.text_input(
        "Sentence:", placeholder="Enter a sentence.", on_change=None
    )

    # TODO: Check if this is needed!

    clicked = st.button("Submit")

    if sent:
        
        probs, labels = compute([sent], version=version)
        prob = probs[0]
        label = labels[0]

        
        # Check if the file exists
        if not os.path.exists('logs.txt'):
            with open('logs.txt', 'w') as file:
                pass

        print(f"{sent}, {label}: {prob}")
        with open("logs.txt", "a") as f:
            f.write(f"{sent}, {label}: {prob}\n")
        
        # plot
        if version == "All-Models":
               plot_multiples(["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT", "OpenLID", "GlotLID v3"], labels, probs)
        else:    
               plot(label, prob)
        

with tab2:

    version = st.radio(
        "Choose model",
        ["xlmrlarge", "serengeti", "afriberta", "afroxlmrbase", "afrolm", "BERT","openlid-201", "GlotLID v3", "All-Models"],
        captions=["za-XLMR-Large", "za-Serengeti", "za-AfriBERTa", "za-Afro-XLMR-BASE", "za-AfroLM", "za-BERT", "OpenLID", "GlotLID v3", "All-Models"],
        index = 4,
        key = 'version_tab2',
        horizontal = True
    )

    file = st.file_uploader("Upload a file", type=["txt"])
    if file is not None:
        df = pd.read_csv(file, sep="¦\t¦", header=None, engine='python')
        df.columns = ["Sentence"]
        df.reset_index(drop=True, inplace=True)

        # TODO: Run the model
        df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version)
        df['Language'] = df["Label"].apply(get_name)

        # A horizontal rule
        st.markdown("""---""")

        chart = (
            alt.Chart(df.reset_index())
            .mark_area(color="darkorange", opacity=0.5)
            .encode(
                x=X(field="index", title="Sentence Index"),
                y=Y("Prob", scale=Scale(domain=[0, 1])),
            )
        )
        st.altair_chart(chart.interactive(), use_container_width=True)

        col1, col2 = st.columns([4, 1])

        with col1:
            # Display the output
            st.table(
                df,
            )

        with col2:
            # Add a download button
            csv = convert_df(df)
            st.download_button(
                label=":file_folder: Download predictions as CSV",
                data=csv,
                file_name="GlotLID.csv",
                mime="text/csv",
            )



# citation()