|
import streamlit as st |
|
from config import CONFIG |
|
from model.main import process_query |
|
|
|
st.title("RAG Question Answering System") |
|
|
|
|
|
st.write(""" |
|
Welcome to the Retrieval-Augmented Generation (RAG) Question Answering System. |
|
|
|
### What does this system do? |
|
- Searches through a collection of the first 50,000 documents of the dataset to find the most relevant information based on your question using **BM25** and **Semantic Search**. |
|
- Generates accurate answers using the retrieved documents with the power of **OpenAI API GPT-4o-mini**. |
|
- Provides citations for every piece of information to ensure transparency and trustworthiness. |
|
|
|
### Instructions |
|
1. **Enter your OpenAI API Key**: You can use your own key. |
|
2. **Ask Your Question**: Type your question in the input box. |
|
3. **Choose a Retrieval Method**: |
|
- **BM25**: A keyword-based retrieval method. |
|
- **Semantic Search**: A context-based retrieval method powered by embeddings. |
|
4. **Generate the Answer**: Click the "Generate Answer" button to retrieve relevant documents and generate a detailed answer. |
|
|
|
Feel free to experiment with different questions and retrieval methods to explore how the system performs! |
|
""") |
|
|
|
llm_key = st.text_input("Enter your LLM API Key", type="password") |
|
|
|
|
|
if not llm_key: |
|
st.warning("Please provide your LLM API Key to proceed.") |
|
st.stop() |
|
|
|
query = st.text_input("Enter your question") |
|
retrieval_method = st.radio( |
|
"Select Retrieval Method", |
|
("BM25", "Semantic Search") |
|
) |
|
|
|
if st.button("Generate Answear"): |
|
if not query.strip(): |
|
st.warning("Please enter a question to process.") |
|
else: |
|
with st.spinner("Processing your query..."): |
|
try: |
|
retrieved_docs, answer = process_query(llm_key, query, retrieval_method) |
|
|
|
st.subheader("Retrieved Documents") |
|
for doc in retrieved_docs: |
|
st.write(f"- {doc}") |
|
|
|
st.subheader("Generated Answer") |
|
st.text_area("Generated Answer", value=answer, height=CONFIG['TEXTAREA_HEIGHT'], disabled=True) |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.stTextArea { |
|
border: 2px solid #4CAF50; |
|
border-radius: 8px; |
|
padding: 10px; |
|
font-family: Arial, sans-serif; |
|
font-size: 14px; |
|
box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.1); |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|