drlee1's picture
Update app.py
61c56fd verified
raw
history blame
2.87 kB
import os
import json
import gradio as gr
import pandas as pd
from openai import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
API_KEY = os.getenv("YOUR_KEY")
PASSWORD = os.getenv("PASSWORD")
MODEL = "gpt-4o"
client = OpenAI(api_key = API_KEY)
embeddings = OpenAIEmbeddings(model = "text-embedding-3-large", api_key = API_KEY)
yt_chunks = FAISS.load_local("vector-large", embeddings, allow_dangerous_deserialization = True)
df = pd.read_csv("data/ko-youtube-trans-U10k.csv")
def find_docs(message):
finding_docs = yt_chunks.similarity_search(message, k = 5)
indices = [doc.metadata['row'] for doc in finding_docs]
retrievers = [json.loads(df.loc[idx].to_json(force_ascii = False)) for idx in indices]
return retrievers
def predict(message, history):
openai_input = list()
retriever = find_docs(message)
system_prompt = """- You are an AI chat bot that recommends YouTube content to users as an assistant.\n- You were created and powered by 'bigster (๋น…์Šคํ„ฐ)', an AI & bigdata expert company.\n- Recommend YouTube content to users based on what's in โ€œretrieverโ€.\n- If the user's question is not related to content recommendations, please display a message declining to answer.\n- You must recommend at least 3 YouTube content items to the user based on the information in the 'retriever'. Be sure to explicitly include 'url' & 'videoChannelName' & 'videoName' information in your response. Also, for each featured piece of content, summarize what's in the 'transcription' and present it to the user. Use the following Markdown format to create hyperlinks: '[videoName](url)'\n\n retriever:\n{retriever}"""
for human, assistant in history:
openai_input.append({"role": "user", "content": human})
openai_input.append({"role": "assistant", "content": assistant})
openai_input = [item for item in openai_input if item['role'] != "system"]
openai_input.append({"role": "system", "content": system_prompt.format(retriever = retriever)})
openai_input.append({"role": "user", "content": message})
response = client.chat.completions.create(
model = MODEL,
messages = openai_input,
temperature = 1.0,
stream = True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
print(openai_input)
gr.ChatInterface(
predict,
title = "YOUTUBE REC",
theme = gr.themes.Soft(primary_hue = "purple"),
examples = [
"ํŒŒ์ด์ฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด๋ฅผ ๋…ํ•™ํ•˜๊ธฐ ์œ„ํ•œ ์˜์ƒ์„ ์ถ”์ฒœํ•ด์ค˜.",
]
).launch(share = True, auth = ("user", PASSWORD))