Spaces:
Sleeping
Sleeping
File size: 2,965 Bytes
d5a6487 bcc7923 7d71f93 bcc7923 5c5bbab bcc7923 407ae47 bcc7923 0d4f501 bcc7923 e4bfc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from langchain import PromptTemplate
#from langchain_core.prompts import PromptTemplate
import os
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms.ctransformers import CTransformers
#from langchain.chains import RetrievalQA
from langchain.chains.retrieval_qa.base import RetrievalQA
import chainlit as cl
DB_FAISS_PATH = 'vectorstores/'
custom_prompt_template = '''
use the following pieces of information to answer the user's questions.
If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
Context : {context}
Question : {question}
only return the helpful answer below and nothing else.
'''
def set_custom_prompt():
"""
Prompt template for QA retrieval for vector stores
"""
# prompt = PromptTemplate(template = custom_prompt_template,
# input_variables = ['context','question'])
# return prompt
prompt = PromptTemplate(template=custom_prompt_template,
input_variables=['context', 'question']) # Ensure this matches expected inputs
return prompt
def load_llm():
llm = CTransformers(
model = 'TheBloke/Llama-2-7B-Chat-GGML',
#model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML"),
model_type = 'llama',
max_new_token = 512,
temperature = 0.5
)
return llm
def retrieval_qa_chain(llm,prompt,db):
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = 'stuff',
retriever = db.as_retriever(search_kwargs= {'k': 2}),
return_source_documents = True,
chain_type_kwargs = {'prompt': prompt}
)
return qa_chain
def qa_bot():
embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
model_kwargs = {'device':'cpu'})
db = FAISS.load_local(DB_FAISS_PATH, embeddings,allow_dangerous_deserialization=True)
llm = load_llm()
qa_prompt = set_custom_prompt()
qa = retrieval_qa_chain(llm,qa_prompt, db)
return qa
def final_result(query):
qa_result = qa_bot()
response = qa_result({'query' : query})
return response
import streamlit as st
# Initialize the bot
bot = qa_bot()
def process_query(query):
# Here you would include the logic to process the query and return a response
response, sources = bot.answer_query(query) # Modify this according to your bot implementation
if sources:
response += f"\nSources: {', '.join(sources)}"
else:
response += "\nNo Sources Found"
return response
# Setting up the Streamlit app
st.title('Medical Chatbot')
user_input = st.text_input("Hi, welcome to the medical Bot. What is your query?")
if user_input:
output = process_query(user_input)
st.text_area("Response", output, height=300) |