Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
from torchvision.models._api import WeightsEnum | |
from torch.hub import load_state_dict_from_url | |
def get_state_dict(self, *args, **kwargs): | |
kwargs.pop("check_hash") | |
return load_state_dict_from_url(self.url, *args, **kwargs) | |
WeightsEnum.get_state_dict = get_state_dict | |
def create_effnetb2_model(num_classes : int = 3, | |
seed : int = 42): | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transform = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights= weights) | |
for param in model.parameters(): | |
param.requires_grad = False | |
torch.manual_seed(seed) | |
model.classifier = torch.nn.Sequential( | |
torch.nn.Dropout(p=0.3, inplace= True), | |
torch.nn.Linear(in_features = 1408, | |
out_features = num_classes) | |
) | |
return model , transform | |