File size: 3,754 Bytes
13f3d4d
 
 
 
abed5b0
13f3d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abed5b0
 
13f3d4d
 
 
 
 
 
 
 
 
 
 
 
 
b25aa95
13f3d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25aa95
13f3d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

import gradio as gr
import os
import torch
import numpy

from timeit import default_timer as timer
from model import create_effnetb2_model
from typing import Tuple , Dict

# 1.Import and class names setup
class_names = ['apple_pie',
 'baby_back_ribs',
 'baklava',
 'beef_carpaccio',
 'beef_tartare',
 'beet_salad',
 'beignets',
 'bibimbap',
 'bread_pudding',
 'breakfast_burrito',
 'bruschetta',
 'caesar_salad',
 'cannoli',
 'caprese_salad',
 'carrot_cake',
 'ceviche',
 'cheese_plate',
 'cheesecake',
 'chicken_curry',
 'chicken_quesadilla',
 'chicken_wings',
 'chocolate_cake',
 'chocolate_mousse',
 'churros',
 'clam_chowder',
 'club_sandwich',
 'crab_cakes',
 'creme_brulee',
 'croque_madame',
 'cup_cakes',
 'deviled_eggs',
 'donuts',
 'dumplings',
 'edamame',
 'eggs_benedict',
 'escargots',
 'falafel',
 'filet_mignon',
 'fish_and_chips',
 'foie_gras',
 'french_fries',
 'french_onion_soup',
 'french_toast',
 'fried_calamari',
 'fried_rice',
 'frozen_yogurt',
 'garlic_bread',
 'gnocchi',
 'greek_salad',
 'grilled_cheese_sandwich',
 'grilled_salmon',
 'guacamole',
 'gyoza',
 'hamburger',
 'hot_and_sour_soup',
 'hot_dog',
 'huevos_rancheros',
 'hummus',
 'ice_cream',
 'lasagna',
 'lobster_bisque',
 'lobster_roll_sandwich',
 'macaroni_and_cheese',
 'macarons',
 'miso_soup',
 'mussels',
 'nachos',
 'omelette',
 'onion_rings',
 'oysters',
 'pad_thai',
 'paella',
 'pancakes',
 'panna_cotta',
 'peking_duck',
 'pho',
 'pizza',
 'pork_chop',
 'poutine',
 'prime_rib',
 'pulled_pork_sandwich',
 'ramen',
 'ravioli',
 'red_velvet_cake',
 'risotto',
 'samosa',
 'sashimi',
 'scallops',
 'seaweed_salad',
 'shrimp_and_grits',
 'spaghetti_bolognese',
 'spaghetti_carbonara',
 'spring_rolls',
 'steak',
 'strawberry_shortcake',
 'sushi',
 'tacos',
 'takoyaki',
 'tiramisu',
 'tuna_tartare',
 'waffles']


print(numpy.__version__)
from torchvision.models._api import WeightsEnum
from torch.hub import load_state_dict_from_url
def get_state_dict(self, *args, **kwargs):
    kwargs.pop("check_hash")
    return load_state_dict_from_url(self.url, *args, **kwargs)
WeightsEnum.get_state_dict = get_state_dict

# 2. Model annd transforms prepration
effnetb2_model  , effnet_b2_transforms = create_effnetb2_model(num_classes = 101, seed = 42)

# Load save weights
effnetb2_model.load_state_dict(
  torch.load(
    f='11_pretrained_effnet_feature_extractor_food101_fine_tune.pth',
    map_location = torch.device('cpu') # Load the model on CPU
  )
)
# 3.prediction function (predict())
def predict(img) -> Tuple[Dict,float] :

  start_time = timer()

  image =  effnet_b2_transforms(img).unsqueeze(0)


  effnetb2_model.eval()
  with torch.inference_mode():

    pred_probs = torch.softmax(effnetb2_model(image) , dim=1)
  pred_label_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range (len(class_names))}

  end_time = timer()
  pred_time = round(end_time - start_time , 4)

  return pred_label_and_probs , pred_time

### 4. Gradio app - our Gradio interface + launch command

title = 'FoodVision Big'
description = 'An FineTune last 4 Sequential layers of EfficientNetB2 model to classifiy 101 Food images '
article = 'created at PyTorch Model Deployment'

# Create example list

example_list = [['examples/'+ example] for example in os.listdir('examples')]
example_list

# create a gradio demo
demo = gr.Interface(fn=predict ,
                    inputs=gr.Image(type='pil'),
                    outputs=[gr.Label(num_top_classes = 3 , label= 'prediction'),
                            gr.Number(label= 'Prediction time (s)')],
                    examples = example_list,
                    title = title,
                    description = description,
                    article= article)

# Launch the demo
demo.launch(debug= False)