Spaces:
Runtime error
Runtime error
File size: 6,083 Bytes
89c278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
'''
Copyright (c) Alibaba, Inc. and its affiliates.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import conv_nd, linear
def get_clip_token_for_string(tokenizer, string):
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"]
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
return tokens[0, 1]
def get_bert_token_for_string(tokenizer, string):
token = tokenizer(string)
assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
token = token[0, 1]
return token
def get_clip_vision_emb(encoder, processor, img):
_img = img.repeat(1, 3, 1, 1)*255
inputs = processor(images=_img, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].to(img.device)
outputs = encoder(**inputs)
emb = outputs.image_embeds
return emb
def get_recog_emb(encoder, img_list):
_img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list]
encoder.predictor.eval()
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
return preds_neck
def pad_H(x):
_, _, H, W = x.shape
p_top = (W - H) // 2
p_bot = W - H - p_top
return F.pad(x, (0, 0, p_top, p_bot))
class EncodeNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(EncodeNet, self).__init__()
chan = 16
n_layer = 4 # downsample
self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1)
self.conv_list = nn.ModuleList([])
_c = chan
for i in range(n_layer):
self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2))
_c *= 2
self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.act = nn.SiLU()
def forward(self, x):
x = self.act(self.conv1(x))
for layer in self.conv_list:
x = self.act(layer(x))
x = self.act(self.conv2(x))
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class EmbeddingManager(nn.Module):
def __init__(
self,
embedder,
valid=True,
glyph_channels=20,
position_channels=1,
placeholder_string='*',
add_pos=False,
emb_type='ocr',
**kwargs
):
super().__init__()
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
token_dim = 768
if hasattr(embedder, 'vit'):
assert emb_type == 'vit'
self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor)
self.get_recog_emb = None
else: # using LDM's BERT encoder
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
token_dim = 1280
self.token_dim = token_dim
self.emb_type = emb_type
self.add_pos = add_pos
if add_pos:
self.position_encoder = EncodeNet(position_channels, token_dim)
if emb_type == 'ocr':
self.proj = linear(40*64, token_dim)
if emb_type == 'conv':
self.glyph_encoder = EncodeNet(glyph_channels, token_dim)
self.placeholder_token = get_token_for_string(placeholder_string)
def encode_text(self, text_info):
if self.get_recog_emb is None and self.emb_type == 'ocr':
self.get_recog_emb = partial(get_recog_emb, self.recog)
gline_list = []
pos_list = []
for i in range(len(text_info['n_lines'])): # sample index in a batch
n_lines = text_info['n_lines'][i]
for j in range(n_lines): # line
gline_list += [text_info['gly_line'][j][i:i+1]]
if self.add_pos:
pos_list += [text_info['positions'][j][i:i+1]]
if len(gline_list) > 0:
if self.emb_type == 'ocr':
recog_emb = self.get_recog_emb(gline_list)
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1))
elif self.emb_type == 'vit':
enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0)))
elif self.emb_type == 'conv':
enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0)))
if self.add_pos:
enc_pos = self.position_encoder(torch.cat(gline_list, dim=0))
enc_glyph = enc_glyph+enc_pos
self.text_embs_all = []
n_idx = 0
for i in range(len(text_info['n_lines'])): # sample index in a batch
n_lines = text_info['n_lines'][i]
text_embs = []
for j in range(n_lines): # line
text_embs += [enc_glyph[n_idx:n_idx+1]]
n_idx += 1
self.text_embs_all += [text_embs]
def forward(
self,
tokenized_text,
embedded_text,
):
b, device = tokenized_text.shape[0], tokenized_text.device
for i in range(b):
idx = tokenized_text[i] == self.placeholder_token.to(device)
if sum(idx) > 0:
if i >= len(self.text_embs_all):
print('truncation for log images...')
break
text_emb = torch.cat(self.text_embs_all[i], dim=0)
if sum(idx) != len(text_emb):
print('truncation for long caption...')
embedded_text[i][idx] = text_emb[:sum(idx)]
return embedded_text
def embedding_parameters(self):
return self.parameters()
|