Spaces:
Runtime error
Runtime error
import inspect | |
import logging | |
import re | |
import sys | |
from pathlib import Path | |
import accelerate | |
import torch | |
import transformers | |
from transformers import AutoConfig, AutoModelForCausalLM | |
import modules.shared as shared | |
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) | |
try: | |
import llama_inference_offload | |
except ImportError: | |
logging.error('Failed to load GPTQ-for-LLaMa') | |
logging.error('See https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md') | |
sys.exit(-1) | |
try: | |
from modelutils import find_layers | |
except ImportError: | |
from utils import find_layers | |
try: | |
from quant import make_quant | |
is_triton = False | |
except ImportError: | |
import quant | |
is_triton = True | |
# This function is a replacement for the load_quant function in the | |
# GPTQ-for_LLaMa repository. It supports more models and branches. | |
def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=None, kernel_switch_threshold=128, eval=True): | |
exclude_layers = exclude_layers or ['lm_head'] | |
def noop(*args, **kwargs): | |
pass | |
config = AutoConfig.from_pretrained(model, trust_remote_code=shared.args.trust_remote_code) | |
torch.nn.init.kaiming_uniform_ = noop | |
torch.nn.init.uniform_ = noop | |
torch.nn.init.normal_ = noop | |
torch.set_default_dtype(torch.half) | |
transformers.modeling_utils._init_weights = False | |
torch.set_default_dtype(torch.half) | |
model = AutoModelForCausalLM.from_config(config, trust_remote_code=shared.args.trust_remote_code) | |
torch.set_default_dtype(torch.float) | |
if eval: | |
model = model.eval() | |
layers = find_layers(model) | |
for name in exclude_layers: | |
if name in layers: | |
del layers[name] | |
if not is_triton: | |
gptq_args = inspect.getfullargspec(make_quant).args | |
make_quant_kwargs = { | |
'module': model, | |
'names': layers, | |
'bits': wbits, | |
} | |
if 'groupsize' in gptq_args: | |
make_quant_kwargs['groupsize'] = groupsize | |
if 'faster' in gptq_args: | |
make_quant_kwargs['faster'] = faster_kernel | |
if 'kernel_switch_threshold' in gptq_args: | |
make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold | |
make_quant(**make_quant_kwargs) | |
else: | |
quant.make_quant_linear(model, layers, wbits, groupsize) | |
del layers | |
if checkpoint.endswith('.safetensors'): | |
from safetensors.torch import load_file as safe_load | |
model.load_state_dict(safe_load(checkpoint), strict=False) | |
else: | |
model.load_state_dict(torch.load(checkpoint), strict=False) | |
if is_triton: | |
if shared.args.quant_attn: | |
quant.make_quant_attn(model) | |
if eval and shared.args.fused_mlp: | |
quant.make_fused_mlp(model) | |
if shared.args.warmup_autotune: | |
quant.autotune_warmup_linear(model, transpose=not eval) | |
if eval and shared.args.fused_mlp: | |
quant.autotune_warmup_fused(model) | |
model.seqlen = 2048 | |
return model | |
# Used to locate the .pt/.safetensors quantized file | |
def find_quantized_model_file(model_name): | |
if shared.args.checkpoint: | |
return Path(shared.args.checkpoint) | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
pt_path = None | |
priority_name_list = [ | |
Path(f'{shared.args.model_dir}/{model_name}{hyphen}{shared.args.wbits}bit{group}{ext}') | |
for group in ([f'-{shared.args.groupsize}g', ''] if shared.args.groupsize > 0 else ['']) | |
for ext in ['.safetensors', '.pt'] | |
for hyphen in ['-', f'/{model_name}-', '/'] | |
] | |
for path in priority_name_list: | |
if path.exists(): | |
pt_path = path | |
break | |
# If the model hasn't been found with a well-behaved name, pick the last .pt | |
# or the last .safetensors found in its folder as a last resort | |
if not pt_path: | |
for ext in ['.pt', '.safetensors']: | |
found = list(path_to_model.glob(f"*{ext}")) | |
if len(found) > 0: | |
if len(found) > 1: | |
logging.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') | |
pt_path = found[-1] | |
break | |
return pt_path | |
# The function that loads the model in modules/models.py | |
def load_quantized(model_name): | |
if shared.args.model_type is None: | |
logging.error("The model could not be loaded because its type could not be inferred from its name.") | |
logging.error("Please specify the type manually using the --model_type argument.") | |
return None | |
# Select the appropriate load_quant function | |
model_type = shared.args.model_type.lower() | |
if shared.args.pre_layer and model_type == 'llama': | |
load_quant = llama_inference_offload.load_quant | |
elif model_type in ('llama', 'opt', 'gptj'): | |
if shared.args.pre_layer: | |
logging.warning("Ignoring --pre_layer because it only works for llama model type.") | |
load_quant = _load_quant | |
else: | |
logging.error("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") | |
exit() | |
# Find the quantized model weights file (.pt/.safetensors) | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
pt_path = find_quantized_model_file(model_name) | |
if not pt_path: | |
logging.error("Could not find the quantized model in .pt or .safetensors format, exiting...") | |
exit() | |
else: | |
logging.info(f"Found the following quantized model: {pt_path}") | |
# qwopqwop200's offload | |
if model_type == 'llama' and shared.args.pre_layer: | |
if len(shared.args.pre_layer) == 1: | |
pre_layer = shared.args.pre_layer[0] | |
else: | |
pre_layer = shared.args.pre_layer | |
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, pre_layer) | |
else: | |
threshold = False if model_type == 'gptj' else 128 | |
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) | |
# accelerate offload (doesn't work properly) | |
if shared.args.gpu_memory or torch.cuda.device_count() > 1: | |
if shared.args.gpu_memory: | |
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) | |
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' | |
max_memory = {} | |
for i in range(len(memory_map)): | |
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] | |
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory | |
else: | |
max_memory = accelerate.utils.get_balanced_memory(model) | |
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) | |
logging.info("Using the following device map for the quantized model:", device_map) | |
# https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model | |
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) | |
# No offload | |
elif not shared.args.cpu: | |
model = model.to(torch.device('cuda:0')) | |
return model | |