Spaces:
Sleeping
Sleeping
dominguezdaniel
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoFeatureExtractor
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
|
7 |
+
# Load the tokenizer, model, and feature extractor
|
8 |
+
model_name = "Salesforce/BLIP-image-captioning-base"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def generate_caption(image):
|
14 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
15 |
+
outputs = model.generate(**inputs, max_length=128, num_beams=4, return_dict_in_generate=True)
|
16 |
+
caption = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
17 |
+
return caption
|
18 |
+
|
19 |
+
# Create the Gradio interface
|
20 |
+
interface = gr.Interface(fn=generate_caption,
|
21 |
+
inputs=gr.inputs.Image(type="pil"),
|
22 |
+
outputs="text",
|
23 |
+
title="Image Captioning with BLIP",
|
24 |
+
description="Upload an image to generate a caption.")
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
interface.launch()
|