dmccreary commited on
Commit
3977bf0
·
1 Parent(s): 163fdc4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from huggingface_hub import hf_hub_url, cached_download
4
+ import PIL
5
+ import onnx
6
+ import onnxruntime
7
+
8
+ config_file_url = hf_hub_url("Jacopo/ToonClip", filename="model.onnx")
9
+ model_file = cached_download(config_file_url)
10
+
11
+ onnx_model = onnx.load(model_file)
12
+ onnx.checker.check_model(onnx_model)
13
+
14
+ opts = onnxruntime.SessionOptions()
15
+ opts.intra_op_num_threads = 16
16
+ ort_session = onnxruntime.InferenceSession(model_file, sess_options=opts)
17
+
18
+ input_name = ort_session.get_inputs()[0].name
19
+ output_name = ort_session.get_outputs()[0].name
20
+
21
+ def normalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
22
+ # x = (x - mean) / std
23
+ x = np.asarray(x, dtype=np.float32)
24
+ if len(x.shape) == 4:
25
+ for dim in range(3):
26
+ x[:, dim, :, :] = (x[:, dim, :, :] - mean[dim]) / std[dim]
27
+ if len(x.shape) == 3:
28
+ for dim in range(3):
29
+ x[dim, :, :] = (x[dim, :, :] - mean[dim]) / std[dim]
30
+
31
+ return x
32
+
33
+ def denormalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)):
34
+ # x = (x * std) + mean
35
+ x = np.asarray(x, dtype=np.float32)
36
+ if len(x.shape) == 4:
37
+ for dim in range(3):
38
+ x[:, dim, :, :] = (x[:, dim, :, :] * std[dim]) + mean[dim]
39
+ if len(x.shape) == 3:
40
+ for dim in range(3):
41
+ x[dim, :, :] = (x[dim, :, :] * std[dim]) + mean[dim]
42
+
43
+ return x
44
+
45
+ def nogan(input_img):
46
+ i = np.asarray(input_img)
47
+ i = i.astype("float32")
48
+ i = np.transpose(i, (2, 0, 1))
49
+ i = np.expand_dims(i, 0)
50
+ i = i / 255.0
51
+ i = normalize(i, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
52
+
53
+ ort_outs = ort_session.run([output_name], {input_name: i})
54
+ output = ort_outs
55
+ output = output[0][0]
56
+
57
+ output = denormalize(output, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
58
+ output = output * 255.0
59
+ output = output.astype('uint8')
60
+ output = np.transpose(output, (1, 2, 0))
61
+ output_image = PIL.Image.fromarray(output, 'RGB')
62
+
63
+ return output_image
64
+
65
+ title = "Zoom, Clip, Toon"
66
+ description = """Image to Toon Using AI"""
67
+ article = """
68
+ <p style='text-align: center'>The \"ToonClip\" model was trained by <a href='https://twitter.com/JacopoMangia' target='_blank'>Jacopo Mangiavacchi</a> and available at <a href='https://github.com/jacopomangiavacchi/ComicsHeroMobileUNet' target='_blank'>Github Repo ComicsHeroMobileUNet</a></p>
69
+ <br>
70
+
71
+ """
72
+
73
+ examples=[['1m_hires.jpeg'],['2m_hires.jpeg'],['3m_hires.jpeg'],['1f_hires.jpeg'],['2f_hires.jpeg'],['3f_hires.jpeg']]
74
+
75
+ iface = gr.Interface(
76
+ nogan,
77
+ gr.inputs.Image(type="pil", shape=(1024, 1024)),
78
+ gr.outputs.Image(type="pil"),
79
+ title=title,
80
+ description=description,
81
+ article=article,
82
+ examples=examples)
83
+
84
+ iface.launch()