|
import streamlit as st |
|
import nest_asyncio |
|
import pandas as pd |
|
import os |
|
|
|
from htbuilder import span, div |
|
from loguru import logger |
|
from annotated_text import annotation |
|
from scripts.predict import InferenceHandler |
|
from huggingface_hub import snapshot_download |
|
|
|
from scripts.config import ( |
|
BIN_REPO, |
|
ML_REPO, |
|
DATASET_REPO |
|
) |
|
|
|
|
|
nest_asyncio.apply() |
|
st.set_page_config(layout='wide') |
|
rc = None |
|
|
|
def load_history(parent_elem): |
|
"""Loads the history of results from inference for previous inputs made by the user. |
|
|
|
Parameters |
|
---------- |
|
parent_elem : DeltaGenerator |
|
The Streamlit UI element that contains the history data. |
|
""" |
|
|
|
with parent_elem: |
|
if len(st.session_state.results) == 0: |
|
st.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>", |
|
unsafe_allow_html=True |
|
) |
|
else: |
|
for idx, result in enumerate(st.session_state.results): |
|
text = result['text_input'] |
|
discriminatory = False |
|
|
|
data = [] |
|
for sent_item in result['results']: |
|
sentence = sent_item['sentence'] |
|
bin_class = sent_item['binary_classification']['classification'] |
|
pred_class = sent_item['binary_classification']['prediction_class'] |
|
ml_regr = sent_item['multilabel_regression'] |
|
|
|
row_data = [sentence, bin_class] |
|
if pred_class == 1: |
|
discriminatory = True |
|
for cat in ml_regr.keys(): |
|
perc = ml_regr[cat] * 100 |
|
row_data.append(f'{perc:.2f}%') |
|
else: |
|
for i in range(6): |
|
row_data.append(None) |
|
|
|
data.append(row_data) |
|
df = pd.DataFrame(data=data, columns=['Sentence', 'Binary Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified']) |
|
|
|
with st.expander(label=f'Entry #{idx+1}', icon='π΄' if discriminatory else 'π’'): |
|
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True) |
|
st.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: medium;'>\"{text}\"</p>", |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True) |
|
st.markdown('##### Sentence Breakdown:') |
|
st.dataframe(df) |
|
|
|
@st.cache_data |
|
def load_inference_handler(api_token: str) -> InferenceHandler | None: |
|
"""Loads an instance of the InferenceHandler class once a token is entered. |
|
|
|
Parameters |
|
---------- |
|
api_token: str |
|
The Hugging Face read/write token used for retrieving the binary classification and multilabel regression model tensor files. |
|
|
|
Returns |
|
------- |
|
InferenceHandler | None |
|
Returns an instance of the InferenceHandler class if a valid token is entered, otherwise returns None. |
|
""" |
|
|
|
return InferenceHandler(api_token) |
|
|
|
def build_result_tree(parent_elem, results: dict): |
|
"""Loads the history of results from inference for previous inputs made by the user. |
|
|
|
Parameters |
|
---------- |
|
parent_elem : DeltaGenerator |
|
The Streamlit UI element to post the data to. |
|
results : dict |
|
The resulting data from performing inference. |
|
""" |
|
|
|
label_dict = { |
|
'Gender': '#4A90E2', |
|
'Race': '#E67E22', |
|
'Sexuality': '#3B9C5A', |
|
'Disability': '#8B5E3C', |
|
'Religion': '#A347BA', |
|
'Unspecified': '#A0A0A0' |
|
} |
|
|
|
discriminatory_sentiment = False |
|
|
|
sent_details = [] |
|
for result in results['results']: |
|
sentence = result['sentence'] |
|
bin_class = result['binary_classification']['classification'] |
|
pred_class = result['binary_classification']['prediction_class'] |
|
ml_regr = result['multilabel_regression'] |
|
|
|
sent_res = { |
|
'sentence': sentence, |
|
'classification': f':red[{bin_class}]' if pred_class else f':green[{bin_class}]', |
|
'annotated_categories': [] |
|
} |
|
|
|
if pred_class == 1: |
|
discriminatory_sentiment = True |
|
at_list = [] |
|
for entry in ml_regr.keys(): |
|
val = ml_regr[entry] |
|
if val > 0.0: |
|
perc = val * 100 |
|
at_list.append(annotation(body=entry, label=f'{perc:.2f}%', background=label_dict[entry])) |
|
sent_res['annotated_categories'] = at_list |
|
sent_details.append(sent_res) |
|
|
|
with parent_elem: |
|
result_hdr = ':red[Detected Discriminatory Sentiment]' if discriminatory_sentiment else ':green[No Discriminatory Sentiment Detected]' |
|
st.markdown(f'### Results - {result_hdr}') |
|
with st.container(border=True): |
|
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True) |
|
st.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{results['text_input']}\"</p>", |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True) |
|
|
|
if discriminatory_sentiment: |
|
if (len(results['results']) > 1): |
|
st.markdown('##### Sentence Breakdown:') |
|
for idx, sent in enumerate(sent_details): |
|
with st.expander(label=f'Sentence #{idx+1}', icon='π΄' if len(sent['annotated_categories']) > 0 else 'π’', expanded=True): |
|
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True) |
|
st.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{sent['sentence']}\"</p>", |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True) |
|
|
|
classification = sent['classification'] |
|
st.markdown(f'##### Classification - {classification}') |
|
|
|
if len(sent['annotated_categories']) > 0: |
|
st.markdown( |
|
div( |
|
span(' ' if idx != 0 else '')[ |
|
item |
|
] for idx, item in enumerate(sent['annotated_categories']) |
|
), |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('\n') |
|
else: |
|
sent = sent_details[0] |
|
st.markdown(f"#### Classification - {sent['classification']}") |
|
if len(sent['annotated_categories']) > 0: |
|
st.markdown( |
|
div( |
|
span(' ' if idx != 0 else '')[ |
|
item |
|
] for idx, item in enumerate(sent['annotated_categories']) |
|
), |
|
unsafe_allow_html=True |
|
) |
|
st.markdown('\n') |
|
|
|
@st.cache_data |
|
def analyze_text(input: str): |
|
"""Performs infernce on the entered text using the InferenceHandler. |
|
|
|
Parameters |
|
---------- |
|
input : str |
|
The text to analyze. |
|
""" |
|
if ih is not None: |
|
res = None |
|
with rc: |
|
with st.spinner("Processing...", show_time=True) as spnr: |
|
res = ih.classify_text(input) |
|
del spnr |
|
|
|
if res is not None: |
|
st.session_state.results.append(res) |
|
build_result_tree(rc, res) |
|
|
|
@st.cache_data |
|
def load_datasets(_parent_elem, api_token: str): |
|
|
|
|
|
|
|
cache_path = snapshot_download(repo_id=DATASET_REPO, repo_type='dataset', token=api_token) |
|
ds_record = pd.read_csv(os.path.join(cache_path, 'dataset_record.csv')) |
|
|
|
raw_ds_path = os.path.join(cache_path, 'raw') |
|
interim_ds_path = os.path.join(cache_path, 'interim') |
|
processed_ds_path = os.path.join(cache_path, 'processed') |
|
|
|
with _parent_elem: |
|
st.markdown(f'### Disclaimer') |
|
st.markdown("> The datasets displayed contain content that may be highly discriminatory or offensive in nature. Viewer discretion is advised. This content is presented solely for analysis, research, or educational purposes and does not reflect the views or values of the creators or maintainers of this application.") |
|
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True) |
|
|
|
if os.path.exists(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')): |
|
master_df = pd.read_csv(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')) |
|
|
|
if len(master_df) > 0: |
|
st.markdown(f'### NLPinitiative Master Dataset') |
|
with st.expander(label='Master Dataset'): |
|
st.dataframe(master_df) |
|
|
|
if len(ds_record) > 0: |
|
for _, row in ds_record.iterrows(): |
|
try: |
|
ds_id = row['Dataset ID'] |
|
ds_ref_url = row['Dataset Reference URL'] |
|
raw_fn = row['Raw Dataset Filename'] |
|
norm_fn = row['Converted Filename'] |
|
|
|
raw_df = pd.read_csv(os.path.join(raw_ds_path, raw_fn)) |
|
norm_df = pd.read_csv(os.path.join(interim_ds_path, norm_fn)) |
|
|
|
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True) |
|
st.markdown(f'#### {ds_id} - [Link to Dataset Source]({ds_ref_url})') |
|
with st.expander(label='Dataset'): |
|
st.markdown(f'###### Raw Dataset') |
|
st.dataframe(raw_df) |
|
st.markdown(f'###### Normalized Dataset') |
|
st.dataframe(norm_df) |
|
|
|
except Exception as e: |
|
logger.error(f'{e}') |
|
else: |
|
st.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
|
|
st.title('NLPinitiative Text Classifier') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ih = InferenceHandler(None) |
|
|
|
tab1 = st.empty() |
|
tab2 = st.empty() |
|
tab4 = st.empty() |
|
tab3 = st.empty() |
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(['Classifier', 'About This App', 'Input History', 'Datasets']) |
|
|
|
if "results" not in st.session_state: |
|
st.session_state.results = [] |
|
|
|
with tab1: |
|
"Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory." |
|
|
|
rc = st.container() |
|
text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True) |
|
with text_form: |
|
entry = None |
|
text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False) |
|
form_btn = st.form_submit_button('submit', disabled=True if ih is None else False) |
|
if form_btn and text_area is not None and len(text_area) > 0: |
|
analyze_text(text_area) |
|
|
|
with tab2: |
|
st.markdown( |
|
f""" |
|
The NLPinitiative Discriminatory Text Classifier is an advanced |
|
natural language processing tool designed to detect and flag potentially |
|
discriminatory or harmful language. By analyzing text for biased, offensive, |
|
or exclusionary content, this classifier helps promote more inclusive and |
|
respectful communication. Simply enter your text below, and the model will |
|
assess it based on linguistic patterns and context. While the tool provides |
|
valuable insights, we encourage users to review flagged content thoughtfully |
|
and consider context when interpreting results. |
|
|
|
This project was developed as part of a sponsored project for the |
|
**<a href="https://www.j-initiative.org/" style="text-decoration:none">The J-Healthcare Initiative</a>** for the purpose of |
|
detecting discriminatory speech from public officials and news agencies targetting |
|
marginalized communities communities. |
|
|
|
<hr style="margin: 0 0 0.5em 0;"> |
|
|
|
### How The Tool Works |
|
|
|
The application utilizes two fine-tuned NLP models: |
|
|
|
- A binary classifier for classifying input as Discriminatory or Non-Discriminatory (prediction classes of 1 and 0 respectively). |
|
- A multilabel regression model for assessing the likelihood of specific categories of discrimination |
|
(Gender, Race, Sexuality, Disability, Religion and Unspecified) from a value of 0.0 (no confidence) and 1.0 (max confidence). |
|
|
|
Both models are use the pretrained **<a href="https://doi.org/10.48550/arXiv.1810.04805" style="text-decoration:none">BERT</a>** (Bidirectional Encoder Representations from Transformers) |
|
as the base model, which was trained using the master dataset (which can be viewed on the Datasets tab). The master dataset includes data extracted |
|
and reformatted for use in training these models from the **<a href="https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset" style="text-decoration:none">ETHOS dataset</a>** and |
|
the **<a href="https://github.com/marcoguerini/CONAN?tab=readme-ov-file#multitarget-conan" style="text-decoration:none">Multitarget-CONAN dataset</a>**. |
|
|
|
<hr style="margin: 0 0 0.5em 0;"> |
|
|
|
### Project Links |
|
* **<a href="https://github.com/dlsmallw/NLPinitiative" style="text-decoration:none"><img src="https://raw.githubusercontent.com/tandpfun/skill-icons/refs/heads/main/icons/Github-Dark.svg" style="margin-right: 3px;" width="20" height="20"/> NLPinitiative GitHub Project</a>** - The training/evaluation pipeline used for fine-tuning the models. |
|
* **<a href="https://huggingface.co/{BIN_REPO}" style="text-decoration:none">π€ NLPinitiative HF Binary Classification Model Repository</a>** - The Hugging Face hosted Binary Classification Model Repository. |
|
* **<a href="https://huggingface.co/{ML_REPO}" style="text-decoration:none">π€ NLPinitiative HF Multilabel Regression Model Repository</a>** - The Hugging Face hosted Multilabel Regression Model Repository. |
|
* **<a href="https://huggingface.co/datasets/{DATASET_REPO}" style="text-decoration:none">π€ NLPinitiative HF Dataset Repository</a>** - The Hugging Face hosted Dataset Repository. |
|
|
|
<hr style="margin: 0 0 0.5em 0;"> |
|
|
|
A tool made by **<a href="mailto:[email protected]" style="text-decoration:none">Dan Smallwood</a>** sponsored by **<a href="https://www.j-initiative.org/" style="text-decoration:none">The J-Healthcare Initiative</a>**. |
|
|
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
with tab3: |
|
hist_container = st.container(border=True) |
|
try: |
|
load_history(hist_container) |
|
except: |
|
hist_container.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
with tab4: |
|
ds_container = st.container(border=True) |
|
try: |
|
load_datasets(ds_container, None) |
|
except Exception as e: |
|
logger.error(f'{e}') |
|
ds_container.markdown( |
|
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|