import streamlit as st import nest_asyncio import pandas as pd import os from htbuilder import span, div from loguru import logger from annotated_text import annotation from scripts.predict import InferenceHandler from huggingface_hub import snapshot_download from scripts.config import ( BIN_REPO, ML_REPO, DATASET_REPO ) nest_asyncio.apply() st.set_page_config(layout='wide') rc = None def load_history(parent_elem): """Loads the history of results from inference for previous inputs made by the user. Parameters ---------- parent_elem : DeltaGenerator The Streamlit UI element that contains the history data. """ with parent_elem: if len(st.session_state.results) == 0: st.markdown( f"

No History

", unsafe_allow_html=True ) else: for idx, result in enumerate(st.session_state.results): text = result['text_input'] discriminatory = False data = [] for sent_item in result['results']: sentence = sent_item['sentence'] bin_class = sent_item['binary_classification']['classification'] pred_class = sent_item['binary_classification']['prediction_class'] ml_regr = sent_item['multilabel_regression'] row_data = [sentence, bin_class] if pred_class == 1: discriminatory = True for cat in ml_regr.keys(): perc = ml_regr[cat] * 100 row_data.append(f'{perc:.2f}%') else: for i in range(6): row_data.append(None) data.append(row_data) df = pd.DataFrame(data=data, columns=['Sentence', 'Binary Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified']) with st.expander(label=f'Entry #{idx+1}', icon='🔴' if discriminatory else '🟢'): st.markdown('
', unsafe_allow_html=True) st.markdown( f"

\"{text}\"

", unsafe_allow_html=True ) st.markdown('
', unsafe_allow_html=True) st.markdown('##### Sentence Breakdown:') st.dataframe(df) @st.cache_data def load_inference_handler(api_token: str) -> InferenceHandler | None: """Loads an instance of the InferenceHandler class once a token is entered. Parameters ---------- api_token: str The Hugging Face read/write token used for retrieving the binary classification and multilabel regression model tensor files. Returns ------- InferenceHandler | None Returns an instance of the InferenceHandler class if a valid token is entered, otherwise returns None. """ return InferenceHandler(api_token) def build_result_tree(parent_elem, results: dict): """Loads the history of results from inference for previous inputs made by the user. Parameters ---------- parent_elem : DeltaGenerator The Streamlit UI element to post the data to. results : dict The resulting data from performing inference. """ label_dict = { 'Gender': '#4A90E2', 'Race': '#E67E22', 'Sexuality': '#3B9C5A', 'Disability': '#8B5E3C', 'Religion': '#A347BA', 'Unspecified': '#A0A0A0' } discriminatory_sentiment = False sent_details = [] for result in results['results']: sentence = result['sentence'] bin_class = result['binary_classification']['classification'] pred_class = result['binary_classification']['prediction_class'] ml_regr = result['multilabel_regression'] sent_res = { 'sentence': sentence, 'classification': f':red[{bin_class}]' if pred_class else f':green[{bin_class}]', 'annotated_categories': [] } if pred_class == 1: discriminatory_sentiment = True at_list = [] for entry in ml_regr.keys(): val = ml_regr[entry] if val > 0.0: perc = val * 100 at_list.append(annotation(body=entry, label=f'{perc:.2f}%', background=label_dict[entry])) sent_res['annotated_categories'] = at_list sent_details.append(sent_res) with parent_elem: result_hdr = ':red[Detected Discriminatory Sentiment]' if discriminatory_sentiment else ':green[No Discriminatory Sentiment Detected]' st.markdown(f'### Results - {result_hdr}') with st.container(border=True): st.markdown('
', unsafe_allow_html=True) st.markdown( f"

\"{results['text_input']}\"

", unsafe_allow_html=True ) st.markdown('
', unsafe_allow_html=True) if discriminatory_sentiment: if (len(results['results']) > 1): st.markdown('##### Sentence Breakdown:') for idx, sent in enumerate(sent_details): with st.expander(label=f'Sentence #{idx+1}', icon='🔴' if len(sent['annotated_categories']) > 0 else '🟢', expanded=True): st.markdown('
', unsafe_allow_html=True) st.markdown( f"

\"{sent['sentence']}\"

", unsafe_allow_html=True ) st.markdown('
', unsafe_allow_html=True) classification = sent['classification'] st.markdown(f'##### Classification - {classification}') if len(sent['annotated_categories']) > 0: st.markdown( div( span(' ' if idx != 0 else '')[ item ] for idx, item in enumerate(sent['annotated_categories']) ), unsafe_allow_html=True ) st.markdown('\n') else: sent = sent_details[0] st.markdown(f"#### Classification - {sent['classification']}") if len(sent['annotated_categories']) > 0: st.markdown( div( span(' ' if idx != 0 else '')[ item ] for idx, item in enumerate(sent['annotated_categories']) ), unsafe_allow_html=True ) st.markdown('\n') @st.cache_data def analyze_text(input: str): """Performs infernce on the entered text using the InferenceHandler. Parameters ---------- input : str The text to analyze. """ if ih is not None: res = None with rc: with st.spinner("Processing...", show_time=True) as spnr: res = ih.classify_text(input) del spnr if res is not None: st.session_state.results.append(res) build_result_tree(rc, res) @st.cache_data def load_datasets(_parent_elem, api_token: str): # if api_token is None or len(api_token) == 0: # raise Exception() cache_path = snapshot_download(repo_id=DATASET_REPO, repo_type='dataset', token=api_token) ds_record = pd.read_csv(os.path.join(cache_path, 'dataset_record.csv')) raw_ds_path = os.path.join(cache_path, 'raw') interim_ds_path = os.path.join(cache_path, 'interim') processed_ds_path = os.path.join(cache_path, 'processed') with _parent_elem: st.markdown(f'### Disclaimer') st.markdown("> The datasets displayed contain content that may be highly discriminatory or offensive in nature. Viewer discretion is advised. This content is presented solely for analysis, research, or educational purposes and does not reflect the views or values of the creators or maintainers of this application.") st.markdown('
', unsafe_allow_html=True) if os.path.exists(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')): master_df = pd.read_csv(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')) if len(master_df) > 0: st.markdown(f'### NLPinitiative Master Dataset') with st.expander(label='Master Dataset'): st.dataframe(master_df) if len(ds_record) > 0: for _, row in ds_record.iterrows(): try: ds_id = row['Dataset ID'] ds_ref_url = row['Dataset Reference URL'] raw_fn = row['Raw Dataset Filename'] norm_fn = row['Converted Filename'] raw_df = pd.read_csv(os.path.join(raw_ds_path, raw_fn)) norm_df = pd.read_csv(os.path.join(interim_ds_path, norm_fn)) st.markdown('
', unsafe_allow_html=True) st.markdown(f'#### {ds_id} - [Link to Dataset Source]({ds_ref_url})') with st.expander(label='Dataset'): st.markdown(f'###### Raw Dataset') st.dataframe(raw_df) st.markdown(f'###### Normalized Dataset') st.dataframe(norm_df) except Exception as e: logger.error(f'{e}') else: st.markdown( f"

No Datasets to Display

", unsafe_allow_html=True ) #=========================================================================================================================================== st.title('NLPinitiative Text Classifier') # st.sidebar.write("") # API_KEY = st.sidebar.text_input( # "Enter your HuggingFace API Token", # help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens", # type="password", # ) # if API_KEY is not None and len(API_KEY) > 0: # try: # ih = load_inference_handler(API_KEY) # except Exception as e: # ih = None # st.sidebar.write(f'Failed to load inference handler: {e}') # else: # ih = None ih = InferenceHandler(None) tab1 = st.empty() tab2 = st.empty() tab4 = st.empty() tab3 = st.empty() tab1, tab2, tab3, tab4 = st.tabs(['Classifier', 'About This App', 'Input History', 'Datasets']) if "results" not in st.session_state: st.session_state.results = [] with tab1: "Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory." rc = st.container() text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True) with text_form: entry = None text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False) form_btn = st.form_submit_button('submit', disabled=True if ih is None else False) if form_btn and text_area is not None and len(text_area) > 0: analyze_text(text_area) with tab2: st.markdown( f""" The NLPinitiative Discriminatory Text Classifier is an advanced natural language processing tool designed to detect and flag potentially discriminatory or harmful language. By analyzing text for biased, offensive, or exclusionary content, this classifier helps promote more inclusive and respectful communication. Simply enter your text below, and the model will assess it based on linguistic patterns and context. While the tool provides valuable insights, we encourage users to review flagged content thoughtfully and consider context when interpreting results. This project was developed as part of a sponsored project for the **The J-Healthcare Initiative** for the purpose of detecting discriminatory speech from public officials and news agencies targetting marginalized communities communities.
### How The Tool Works The application utilizes two fine-tuned NLP models: - A binary classifier for classifying input as Discriminatory or Non-Discriminatory (prediction classes of 1 and 0 respectively). - A multilabel regression model for assessing the likelihood of specific categories of discrimination (Gender, Race, Sexuality, Disability, Religion and Unspecified) from a value of 0.0 (no confidence) and 1.0 (max confidence). Both models are use the pretrained **BERT** (Bidirectional Encoder Representations from Transformers) as the base model, which was trained using the master dataset (which can be viewed on the Datasets tab). The master dataset includes data extracted and reformatted for use in training these models from the **ETHOS dataset** and the **Multitarget-CONAN dataset**.
### Project Links * ** NLPinitiative GitHub Project** - The training/evaluation pipeline used for fine-tuning the models. * **🤗 NLPinitiative HF Binary Classification Model Repository** - The Hugging Face hosted Binary Classification Model Repository. * **🤗 NLPinitiative HF Multilabel Regression Model Repository** - The Hugging Face hosted Multilabel Regression Model Repository. * **🤗 NLPinitiative HF Dataset Repository** - The Hugging Face hosted Dataset Repository.
A tool made by **Dan Smallwood** sponsored by **The J-Healthcare Initiative**. """, unsafe_allow_html=True ) with tab3: hist_container = st.container(border=True) try: load_history(hist_container) except: hist_container.markdown( f"

No History

", unsafe_allow_html=True ) with tab4: ds_container = st.container(border=True) try: load_datasets(ds_container, None) except Exception as e: logger.error(f'{e}') ds_container.markdown( f"

No Datasets to Display

", unsafe_allow_html=True )