File size: 8,547 Bytes
120f3a5
9a0de7d
377b74f
9a0de7d
82221ca
9a0de7d
 
 
120f3a5
a189dd1
 
 
 
aa4fbce
 
 
 
377b74f
9a0de7d
377b74f
 
 
9a0de7d
377b74f
 
 
 
 
 
 
 
 
9a0de7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9bb68
 
 
 
 
 
 
 
377b74f
9a0de7d
 
 
 
 
 
 
 
5e9bb68
9a0de7d
 
 
 
 
5e9bb68
9a0de7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9bb68
a189dd1
5e9bb68
a189dd1
 
 
 
9a0de7d
a189dd1
 
 
 
 
9a0de7d
5e9bb68
377b74f
a189dd1
 
 
 
 
 
 
aa4fbce
a189dd1
9a0de7d
 
 
 
 
377b74f
 
 
 
 
 
 
a189dd1
377b74f
 
aa4fbce
a189dd1
 
aa4fbce
 
377b74f
 
9a0de7d
 
 
46e80bf
5e9bb68
 
 
 
 
 
 
 
377b74f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import streamlit as st
import nest_asyncio
import pandas as pd
from annotated_text import annotation
from scripts.predict import InferenceHandler
from htbuilder import span, div

nest_asyncio.apply()

rc = None

@st.cache_data
def load_inference_handler(api_token):
    try:
        return InferenceHandler(api_token)
    except:
        return None

@st.cache_data
def extract_data(json_obj):
    row_data = []

    row_data.append(json_obj['text_input'])
    row_data.append(json_obj['text_sentiment'])
    cat_dict = json_obj['category_sentiments']
    for cat in cat_dict.keys():
        raw_val = cat_dict[cat]
        val = f'{raw_val * 100: .2f}%' if raw_val is not None else 'N/A'
        row_data.append(val)
    
    return row_data

def load_history(parent_elem):
    with parent_elem:
        for idx, result in enumerate(st.session_state.results):
            text = result['text_input']
            discriminatory = False

            data = []
            for sent_item in result['results']:
                sentence = sent_item['sentence']
                bin_class = sent_item['binary_classification']['classification']
                pred_class = sent_item['binary_classification']['prediction_class']
                ml_regr = sent_item['multilabel_regression']

                row_data = [sentence, bin_class]
                if pred_class == 1:
                    discriminatory = True
                    for cat in ml_regr.keys():
                        perc = ml_regr[cat] * 100
                        row_data.append(f'{perc:.2f}%')
                else:
                    for i in range(6):
                        row_data.append(None)

                data.append(row_data)
            df = pd.DataFrame(data=data, columns=['Sentence', 'Binary Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified'])

            with st.expander(label=f'Entry #{idx+1}', icon='πŸ”΄' if discriminatory else '🟒'):
                st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
                st.markdown(
                    f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: medium;'>\"{text}\"</p>", 
                    unsafe_allow_html=True
                )
                st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
                st.markdown('##### Sentence Breakdown:')
                st.dataframe(df)


def build_result_tree(parent_elem, results):
    label_dict = {
        'Gender': '#4A90E2',
        'Race': '#E67E22',
        'Sexuality': '#3B9C5A',  
        'Disability': '#8B5E3C',
        'Religion': '#A347BA',  
        'Unspecified': '#A0A0A0'
    }

    discriminatory_sentiment = False

    sent_details = []
    for result in results['results']:
        sentence = result['sentence']
        bin_class = result['binary_classification']['classification']
        pred_class = result['binary_classification']['prediction_class']
        ml_regr = result['multilabel_regression']

        sent_res = {
            'sentence': sentence,
            'classification': f'{':red' if pred_class else ':green'}[{bin_class}]',
            'annotated_categories': []
        }

        if pred_class == 1:
            discriminatory_sentiment = True
            at_list = []
            for entry in ml_regr.keys():
                val = ml_regr[entry]
                if val > 0.0:
                    perc = val * 100
                    at_list.append(annotation(body=entry, label=f'{perc:.2f}%', background=label_dict[entry]))
            sent_res['annotated_categories'] = at_list
        sent_details.append(sent_res)

    with parent_elem:
        st.markdown(f'### Results - {':red[Detected Discriminatory Sentiment]' if discriminatory_sentiment else ':green[No Discriminatory Sentiment Detected]'}')
        with st.container(border=True):
            st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
            st.markdown(
                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{results['text_input']}\"</p>", 
                unsafe_allow_html=True
            )
            st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)

            if discriminatory_sentiment:
                if (len(results['results']) > 1):
                    st.markdown('##### Sentence Breakdown:')
                    for idx, sent in enumerate(sent_details):
                        with st.expander(label=f'Sentence #{idx+1}', icon='πŸ”΄' if len(sent['annotated_categories']) > 0 else '🟒', expanded=True):
                            st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
                            st.markdown(
                                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{sent['sentence']}\"</p>", 
                                unsafe_allow_html=True
                            )
                            st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
                            st.markdown(f'##### Classification - {sent['classification']}')

                            if len(sent['annotated_categories']) > 0:
                                st.markdown(
                                    div(    
                                        span(' ' if idx != 0 else '')[
                                            item
                                        ] for idx, item in enumerate(sent['annotated_categories'])
                                    ),
                                    unsafe_allow_html=True
                                )
                                st.markdown('\n')
                else:
                    st.markdown(f"#### Classification - {sent['classification']}")
                    if len(sent['annotated_categories']) > 0:
                        st.markdown(
                            div(    
                                span(' ' if idx != 0 else '')[
                                    item
                                ] for idx, item in enumerate(sent['annotated_categories'])
                            ),
                            unsafe_allow_html=True
                        )
                        st.markdown('\n')

@st.cache_data
def analyze_text(text):
    if ih:
        res = None
        with rc:
            with st.spinner("Processing...", show_time=True) as spnr:
                # time.sleep(5)
                res = ih.classify_text(text)
                del spnr

        if res is not None:
            st.session_state.results.append(res)
            build_result_tree(rc, res)

st.title('NLPinitiative Text Classifier')

st.sidebar.write("")
API_KEY = st.sidebar.text_input(
    "Enter your HuggingFace API Token",
    help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens",
    type="password",
)
ih = load_inference_handler(API_KEY)

tab1 = st.empty()
tab2 = st.empty()
tab3 = st.empty()

tab1, tab2, tab3 = st.tabs(['Classifier', 'Input History', 'About This App'])

if "results" not in st.session_state:
    st.session_state.results = []

with tab1:
    "Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory."

    rc = st.container()
    text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True)
    with text_form:
        entry = None
        text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False)
        form_btn = st.form_submit_button('submit', disabled=True if ih is None else False)
        if form_btn and text_area is not None and len(text_area) > 0:
            analyze_text(text_area)

with tab2:
    load_history(tab2)

with tab3:
    st.markdown(
    """The NLPinitiative Discriminatory Text Classifier is an advanced 
    natural language processing tool designed to detect and flag potentially 
    discriminatory or harmful language. By analyzing text for biased, offensive, 
    or exclusionary content, this classifier helps promote more inclusive and 
    respectful communication. Simply enter your text below, and the model will 
    assess it based on linguistic patterns and context. While the tool provides 
    valuable insights, we encourage users to review flagged content thoughtfully 
    and consider context when interpreting results."""
)