File size: 14,074 Bytes
120f3a5 9a0de7d 377b74f b72f4a5 9a0de7d 82221ca b72f4a5 9a0de7d b72f4a5 120f3a5 b72f4a5 a189dd1 b72f4a5 a189dd1 b72f4a5 aa4fbce 377b74f b72f4a5 9a0de7d b72f4a5 9a0de7d 5e9bb68 377b74f 9a0de7d 5e9bb68 9a0de7d 9b84b3f 9a0de7d 5e9bb68 9a0de7d 19c3f9b 9a0de7d b72f4a5 5fe82da 9a0de7d b72f4a5 9a0de7d 5e9bb68 a189dd1 b72f4a5 a189dd1 9a0de7d b72f4a5 a189dd1 9a0de7d 5e9bb68 b72f4a5 377b74f a189dd1 aa4fbce a189dd1 9a0de7d b72f4a5 9a0de7d b72f4a5 377b74f a189dd1 377b74f aa4fbce a189dd1 aa4fbce 377b74f b72f4a5 9a0de7d b72f4a5 46e80bf b72f4a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
import nest_asyncio
import pandas as pd
import os
from htbuilder import span, div
from loguru import logger
from annotated_text import annotation
from scripts.predict import InferenceHandler
from huggingface_hub import snapshot_download
from scripts.config import DATASET_REPO
nest_asyncio.apply()
st.set_page_config(layout='wide')
rc = None
def load_history(parent_elem):
"""Loads the history of results from inference for previous inputs made by the user.
Parameters
----------
parent_elem : DeltaGenerator
The Streamlit UI element that contains the history data.
"""
with parent_elem:
if len(st.session_state.results) == 0:
st.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>",
unsafe_allow_html=True
)
else:
for idx, result in enumerate(st.session_state.results):
text = result['text_input']
discriminatory = False
data = []
for sent_item in result['results']:
sentence = sent_item['sentence']
bin_class = sent_item['binary_classification']['classification']
pred_class = sent_item['binary_classification']['prediction_class']
ml_regr = sent_item['multilabel_regression']
row_data = [sentence, bin_class]
if pred_class == 1:
discriminatory = True
for cat in ml_regr.keys():
perc = ml_regr[cat] * 100
row_data.append(f'{perc:.2f}%')
else:
for i in range(6):
row_data.append(None)
data.append(row_data)
df = pd.DataFrame(data=data, columns=['Sentence', 'Binary Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified'])
with st.expander(label=f'Entry #{idx+1}', icon='π΄' if discriminatory else 'π’'):
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
st.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: medium;'>\"{text}\"</p>",
unsafe_allow_html=True
)
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
st.markdown('##### Sentence Breakdown:')
st.dataframe(df)
@st.cache_data
def load_inference_handler(api_token: str) -> InferenceHandler | None:
"""Loads an instance of the InferenceHandler class once a token is entered.
Parameters
----------
api_token: str
The Hugging Face read/write token used for retrieving the binary classification and multilabel regression model tensor files.
Returns
-------
InferenceHandler | None
Returns an instance of the InferenceHandler class if a valid token is entered, otherwise returns None.
"""
try:
return InferenceHandler(api_token)
except:
return None
def build_result_tree(parent_elem, results: dict):
"""Loads the history of results from inference for previous inputs made by the user.
Parameters
----------
parent_elem : DeltaGenerator
The Streamlit UI element to post the data to.
results : dict
The resulting data from performing inference.
"""
label_dict = {
'Gender': '#4A90E2',
'Race': '#E67E22',
'Sexuality': '#3B9C5A',
'Disability': '#8B5E3C',
'Religion': '#A347BA',
'Unspecified': '#A0A0A0'
}
discriminatory_sentiment = False
sent_details = []
for result in results['results']:
sentence = result['sentence']
bin_class = result['binary_classification']['classification']
pred_class = result['binary_classification']['prediction_class']
ml_regr = result['multilabel_regression']
sent_res = {
'sentence': sentence,
'classification': f':red[{bin_class}]' if pred_class else f':green[{bin_class}]',
'annotated_categories': []
}
if pred_class == 1:
discriminatory_sentiment = True
at_list = []
for entry in ml_regr.keys():
val = ml_regr[entry]
if val > 0.0:
perc = val * 100
at_list.append(annotation(body=entry, label=f'{perc:.2f}%', background=label_dict[entry]))
sent_res['annotated_categories'] = at_list
sent_details.append(sent_res)
with parent_elem:
result_hdr = ':red[Detected Discriminatory Sentiment]' if discriminatory_sentiment else ':green[No Discriminatory Sentiment Detected]'
st.markdown(f'### Results - {result_hdr}')
with st.container(border=True):
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
st.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{results['text_input']}\"</p>",
unsafe_allow_html=True
)
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
if discriminatory_sentiment:
if (len(results['results']) > 1):
st.markdown('##### Sentence Breakdown:')
for idx, sent in enumerate(sent_details):
with st.expander(label=f'Sentence #{idx+1}', icon='π΄' if len(sent['annotated_categories']) > 0 else 'π’', expanded=True):
st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
st.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{sent['sentence']}\"</p>",
unsafe_allow_html=True
)
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
classification = sent['classification']
st.markdown(f'##### Classification - {classification}')
if len(sent['annotated_categories']) > 0:
st.markdown(
div(
span(' ' if idx != 0 else '')[
item
] for idx, item in enumerate(sent['annotated_categories'])
),
unsafe_allow_html=True
)
st.markdown('\n')
else:
sent = sent_details[0]
st.markdown(f"#### Classification - {sent['classification']}")
if len(sent['annotated_categories']) > 0:
st.markdown(
div(
span(' ' if idx != 0 else '')[
item
] for idx, item in enumerate(sent['annotated_categories'])
),
unsafe_allow_html=True
)
st.markdown('\n')
@st.cache_data
def analyze_text(input: str):
"""Performs infernce on the entered text using the InferenceHandler.
Parameters
----------
input : str
The text to analyze.
"""
if ih:
res = None
with rc:
with st.spinner("Processing...", show_time=True) as spnr:
# time.sleep(5)
res = ih.classify_text(input)
del spnr
if res is not None:
st.session_state.results.append(res)
build_result_tree(rc, res)
@st.cache_data
def load_datasets(_parent_elem, api_token: str):
if api_token is None or len(api_token) == 0:
raise Exception()
cache_path = snapshot_download(repo_id=DATASET_REPO, repo_type='dataset', token=api_token)
ds_record = pd.read_csv(os.path.join(cache_path, 'dataset_record.csv'))
raw_ds_path = os.path.join(cache_path, 'raw')
interim_ds_path = os.path.join(cache_path, 'interim')
processed_ds_path = os.path.join(cache_path, 'processed')
with _parent_elem:
st.markdown(f'### Disclaimer')
st.markdown("> The datasets displayed contain content that may be highly discriminatory or offensive in nature. Viewer discretion is advised. This content is presented solely for analysis, research, or educational purposes and does not reflect the views or values of the creators or maintainers of this application.")
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
if os.path.exists(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')):
master_df = pd.read_csv(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv'))
if len(master_df) > 0:
st.markdown(f'### NLPinitiative Master Dataset')
with st.expander(label='Master Dataset'):
st.dataframe(master_df)
if len(ds_record) > 0:
for _, row in ds_record.iterrows():
try:
ds_id = row['Dataset ID']
ds_ref_url = row['Dataset Reference URL']
raw_fn = row['Raw Dataset Filename']
norm_fn = row['Converted Filename']
raw_df = pd.read_csv(os.path.join(raw_ds_path, raw_fn))
norm_df = pd.read_csv(os.path.join(interim_ds_path, norm_fn))
st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
st.markdown(f'#### {ds_id} - [Link to Dataset Source]({ds_ref_url})')
with st.expander(label='Dataset'):
st.markdown(f'###### Raw Dataset')
st.dataframe(raw_df)
st.markdown(f'###### Normalized Dataset')
st.dataframe(norm_df)
except Exception as e:
logger.error(f'{e}')
else:
st.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>",
unsafe_allow_html=True
)
#===========================================================================================================================================
st.title('NLPinitiative Text Classifier')
st.sidebar.write("")
API_KEY = st.sidebar.text_input(
"Enter your HuggingFace API Token",
help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens",
type="password",
)
ih = load_inference_handler(API_KEY)
tab1 = st.empty()
tab2 = st.empty()
tab4 = st.empty()
tab3 = st.empty()
tab1, tab2, tab3, tab4 = st.tabs(['Classifier', 'Input History', 'Datasets', 'About This App'])
if "results" not in st.session_state:
st.session_state.results = []
with tab1:
"Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory."
rc = st.container()
text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True)
with text_form:
entry = None
text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False)
form_btn = st.form_submit_button('submit', disabled=True if ih is None else False)
if form_btn and text_area is not None and len(text_area) > 0:
analyze_text(text_area)
with tab2:
hist_container = st.container(border=True)
try:
load_history(hist_container)
except:
hist_container.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>",
unsafe_allow_html=True
)
with tab3:
ds_container = st.container(border=True)
try:
load_datasets(ds_container, API_KEY)
except Exception as e:
logger.error(f'{e}')
ds_container.markdown(
f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>",
unsafe_allow_html=True
)
with tab4:
st.markdown(
f"""
## About
The NLPinitiative Discriminatory Text Classifier is an advanced
natural language processing tool designed to detect and flag potentially
discriminatory or harmful language. By analyzing text for biased, offensive,
or exclusionary content, this classifier helps promote more inclusive and
respectful communication. Simply enter your text below, and the model will
assess it based on linguistic patterns and context. While the tool provides
valuable insights, we encourage users to review flagged content thoughtfully
and consider context when interpreting results.
The application utilizes two NLP models: a fine-tuned binary classifier for classifying input as
Discriminatory or Non-Discriminatory and a fine-tuned multilabel regression model for assessing
the likelihood of specific categories of discrimination (Gender, Race, Sexuality, Disability, Religion
and Unspecified). The base model used for both fine-tuned models is the pretrained
[BERT](https://doi.org/10.48550/arXiv.1810.04805) (Bidirectional Encoder Representations from Transformers)
model.
"""
) |