File size: 14,074 Bytes
120f3a5
9a0de7d
377b74f
b72f4a5
 
 
 
9a0de7d
82221ca
b72f4a5
9a0de7d
b72f4a5
120f3a5
b72f4a5
 
a189dd1
 
b72f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a189dd1
b72f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
aa4fbce
 
 
 
377b74f
b72f4a5
 
9a0de7d
b72f4a5
 
 
 
 
 
 
9a0de7d
5e9bb68
 
 
 
 
 
 
 
377b74f
9a0de7d
 
 
 
 
 
 
 
5e9bb68
9a0de7d
 
9b84b3f
9a0de7d
 
5e9bb68
9a0de7d
 
 
 
 
 
 
 
 
 
 
 
19c3f9b
 
9a0de7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72f4a5
5fe82da
 
9a0de7d
 
 
 
 
 
 
 
 
 
 
 
b72f4a5
9a0de7d
 
 
 
 
 
 
 
 
 
 
5e9bb68
a189dd1
b72f4a5
 
 
 
 
 
 
 
a189dd1
 
 
 
9a0de7d
b72f4a5
a189dd1
 
 
 
9a0de7d
5e9bb68
b72f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377b74f
a189dd1
 
 
 
 
 
 
aa4fbce
a189dd1
9a0de7d
 
b72f4a5
9a0de7d
 
b72f4a5
377b74f
 
 
 
 
 
 
a189dd1
377b74f
 
aa4fbce
a189dd1
 
aa4fbce
 
377b74f
 
b72f4a5
 
 
 
 
 
 
 
9a0de7d
 
b72f4a5
 
 
 
 
 
 
 
 
 
 
46e80bf
b72f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import streamlit as st
import nest_asyncio
import pandas as pd
import os

from htbuilder import span, div
from loguru import logger
from annotated_text import annotation
from scripts.predict import InferenceHandler
from huggingface_hub import snapshot_download

from scripts.config import DATASET_REPO

nest_asyncio.apply()
st.set_page_config(layout='wide')
rc = None

def load_history(parent_elem):
    """Loads the history of results from inference for previous inputs made by the user.

    Parameters
    ----------
    parent_elem : DeltaGenerator
        The Streamlit UI element that contains the history data.
    """

    with parent_elem:
        if len(st.session_state.results) == 0:
            st.markdown(
                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>", 
                unsafe_allow_html=True
            )
        else:
            for idx, result in enumerate(st.session_state.results):
                text = result['text_input']
                discriminatory = False

                data = []
                for sent_item in result['results']:
                    sentence = sent_item['sentence']
                    bin_class = sent_item['binary_classification']['classification']
                    pred_class = sent_item['binary_classification']['prediction_class']
                    ml_regr = sent_item['multilabel_regression']

                    row_data = [sentence, bin_class]
                    if pred_class == 1:
                        discriminatory = True
                        for cat in ml_regr.keys():
                            perc = ml_regr[cat] * 100
                            row_data.append(f'{perc:.2f}%')
                    else:
                        for i in range(6):
                            row_data.append(None)

                    data.append(row_data)
                df = pd.DataFrame(data=data, columns=['Sentence', 'Binary Classification', 'Gender', 'Race', 'Sexuality', 'Disability', 'Religion', 'Unspecified'])

                with st.expander(label=f'Entry #{idx+1}', icon='πŸ”΄' if discriminatory else '🟒'):
                    st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
                    st.markdown(
                        f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: medium;'>\"{text}\"</p>", 
                        unsafe_allow_html=True
                    )
                    st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
                    st.markdown('##### Sentence Breakdown:')
                    st.dataframe(df)

@st.cache_data
def load_inference_handler(api_token: str) -> InferenceHandler | None:
    """Loads an instance of the InferenceHandler class once a token is entered.

    Parameters
    ----------
    api_token: str
        The Hugging Face read/write token used for retrieving the binary classification and multilabel regression model tensor files.

    Returns
    -------
    InferenceHandler | None
        Returns an instance of the InferenceHandler class if a valid token is entered, otherwise returns None.
    """

    try:
        return InferenceHandler(api_token)
    except:
        return None

def build_result_tree(parent_elem, results: dict):
    """Loads the history of results from inference for previous inputs made by the user.

    Parameters
    ----------
    parent_elem : DeltaGenerator
        The Streamlit UI element to post the data to.
    results : dict
        The resulting data from performing inference.
    """

    label_dict = {
        'Gender': '#4A90E2',
        'Race': '#E67E22',
        'Sexuality': '#3B9C5A',  
        'Disability': '#8B5E3C',
        'Religion': '#A347BA',  
        'Unspecified': '#A0A0A0'
    }

    discriminatory_sentiment = False

    sent_details = []
    for result in results['results']:
        sentence = result['sentence']
        bin_class = result['binary_classification']['classification']
        pred_class = result['binary_classification']['prediction_class']
        ml_regr = result['multilabel_regression']

        sent_res = {
            'sentence': sentence,
            'classification': f':red[{bin_class}]' if pred_class else f':green[{bin_class}]',
            'annotated_categories': []
        }

        if pred_class == 1:
            discriminatory_sentiment = True
            at_list = []
            for entry in ml_regr.keys():
                val = ml_regr[entry]
                if val > 0.0:
                    perc = val * 100
                    at_list.append(annotation(body=entry, label=f'{perc:.2f}%', background=label_dict[entry]))
            sent_res['annotated_categories'] = at_list
        sent_details.append(sent_res)

    with parent_elem:
        result_hdr = ':red[Detected Discriminatory Sentiment]' if discriminatory_sentiment else ':green[No Discriminatory Sentiment Detected]'
        st.markdown(f'### Results - {result_hdr}')
        with st.container(border=True):
            st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
            st.markdown(
                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{results['text_input']}\"</p>", 
                unsafe_allow_html=True
            )
            st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)

            if discriminatory_sentiment:
                if (len(results['results']) > 1):
                    st.markdown('##### Sentence Breakdown:')
                    for idx, sent in enumerate(sent_details):
                        with st.expander(label=f'Sentence #{idx+1}', icon='πŸ”΄' if len(sent['annotated_categories']) > 0 else '🟒', expanded=True):
                            st.markdown('<hr style="margin: 0.5em 0 0 0;">', unsafe_allow_html=True)
                            st.markdown(
                                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: large;'>\"{sent['sentence']}\"</p>", 
                                unsafe_allow_html=True
                            )
                            st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)

                            classification = sent['classification']
                            st.markdown(f'##### Classification - {classification}')

                            if len(sent['annotated_categories']) > 0:
                                st.markdown(
                                    div(    
                                        span(' ' if idx != 0 else '')[
                                            item
                                        ] for idx, item in enumerate(sent['annotated_categories'])
                                    ),
                                    unsafe_allow_html=True
                                )
                                st.markdown('\n')
                else:
                    sent = sent_details[0]
                    st.markdown(f"#### Classification - {sent['classification']}")
                    if len(sent['annotated_categories']) > 0:
                        st.markdown(
                            div(    
                                span(' ' if idx != 0 else '')[
                                    item
                                ] for idx, item in enumerate(sent['annotated_categories'])
                            ),
                            unsafe_allow_html=True
                        )
                        st.markdown('\n')

@st.cache_data
def analyze_text(input: str):
    """Performs infernce on the entered text using the InferenceHandler.
    
    Parameters
    ----------
    input : str
        The text to analyze.
    """
    if ih:
        res = None
        with rc:
            with st.spinner("Processing...", show_time=True) as spnr:
                # time.sleep(5)
                res = ih.classify_text(input)
                del spnr

        if res is not None:
            st.session_state.results.append(res)
            build_result_tree(rc, res)

@st.cache_data
def load_datasets(_parent_elem, api_token: str):
    if api_token is None or len(api_token) == 0:
        raise Exception()

    cache_path = snapshot_download(repo_id=DATASET_REPO, repo_type='dataset', token=api_token)
    ds_record = pd.read_csv(os.path.join(cache_path, 'dataset_record.csv'))
    
    raw_ds_path = os.path.join(cache_path, 'raw')
    interim_ds_path = os.path.join(cache_path, 'interim')
    processed_ds_path = os.path.join(cache_path, 'processed')

    with _parent_elem:
        st.markdown(f'### Disclaimer')
        st.markdown("> The datasets displayed contain content that may be highly discriminatory or offensive in nature. Viewer discretion is advised. This content is presented solely for analysis, research, or educational purposes and does not reflect the views or values of the creators or maintainers of this application.")
        st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)

        if os.path.exists(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv')):
            master_df = pd.read_csv(os.path.join(processed_ds_path, 'NLPinitiative_Master_Dataset.csv'))

            if len(master_df) > 0:
                st.markdown(f'### NLPinitiative Master Dataset')
                with st.expander(label='Master Dataset'):
                    st.dataframe(master_df)

        if len(ds_record) > 0:
            for _, row in ds_record.iterrows():
                try:
                    ds_id = row['Dataset ID']
                    ds_ref_url = row['Dataset Reference URL']
                    raw_fn = row['Raw Dataset Filename']
                    norm_fn = row['Converted Filename']

                    raw_df = pd.read_csv(os.path.join(raw_ds_path, raw_fn))
                    norm_df = pd.read_csv(os.path.join(interim_ds_path, norm_fn))

                    st.markdown('<hr style="margin: 0 0 0.5em 0;">', unsafe_allow_html=True)
                    st.markdown(f'#### {ds_id} - [Link to Dataset Source]({ds_ref_url})')
                    with st.expander(label='Dataset'):
                        st.markdown(f'###### Raw Dataset')
                        st.dataframe(raw_df)
                        st.markdown(f'###### Normalized Dataset')
                        st.dataframe(norm_df)
                    
                except Exception as e:
                    logger.error(f'{e}')
        else:
            st.markdown(
                f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>", 
                unsafe_allow_html=True
            )

#===========================================================================================================================================

st.title('NLPinitiative Text Classifier')

st.sidebar.write("")
API_KEY = st.sidebar.text_input(
    "Enter your HuggingFace API Token",
    help="You can get your free API token in your settings page: https://huggingface.co/settings/tokens",
    type="password",
)
ih = load_inference_handler(API_KEY)

tab1 = st.empty()
tab2 = st.empty()
tab4 = st.empty()
tab3 = st.empty()

tab1, tab2, tab3, tab4 = st.tabs(['Classifier', 'Input History', 'Datasets', 'About This App'])

if "results" not in st.session_state:
    st.session_state.results = []

with tab1:
    "Text Classifier for determining if entered text is discriminatory (and the categories of discrimination) or Non-Discriminatory."

    rc = st.container()
    text_form = st.form(key='classifier', clear_on_submit=True, enter_to_submit=True)
    with text_form:
        entry = None
        text_area = st.text_area('Enter text to classify', value='', disabled=True if ih is None else False)
        form_btn = st.form_submit_button('submit', disabled=True if ih is None else False)
        if form_btn and text_area is not None and len(text_area) > 0:
            analyze_text(text_area)

with tab2:
    hist_container = st.container(border=True)
    try:
        load_history(hist_container)
    except:
        hist_container.markdown(
            f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No History</p>", 
            unsafe_allow_html=True
        )

with tab3:
    ds_container = st.container(border=True)
    try:
        load_datasets(ds_container, API_KEY)
    except Exception as e:
        logger.error(f'{e}')
        ds_container.markdown(
            f"<p style='text-align: center; font-weight: bold; font-style: italic; font-size: 1.5vw;'>No Datasets to Display</p>", 
            unsafe_allow_html=True
        )

with tab4:
    st.markdown(
        f"""
        ## About
        The NLPinitiative Discriminatory Text Classifier is an advanced 
        natural language processing tool designed to detect and flag potentially 
        discriminatory or harmful language. By analyzing text for biased, offensive, 
        or exclusionary content, this classifier helps promote more inclusive and 
        respectful communication. Simply enter your text below, and the model will 
        assess it based on linguistic patterns and context. While the tool provides 
        valuable insights, we encourage users to review flagged content thoughtfully 
        and consider context when interpreting results.

        The application utilizes two NLP models: a fine-tuned binary classifier for classifying input as 
        Discriminatory or Non-Discriminatory and a fine-tuned multilabel regression model for assessing 
        the likelihood of specific categories of discrimination (Gender, Race, Sexuality, Disability, Religion 
        and Unspecified). The base model used for both fine-tuned models is the pretrained 
        [BERT](https://doi.org/10.48550/arXiv.1810.04805) (Bidirectional Encoder Representations from Transformers) 
        model.
        """
    )