Spaces:
Build error
Build error
import os | |
import re | |
import requests | |
import pysrt | |
from langchain_community.document_loaders import ( | |
PyMuPDFLoader, | |
Docx2txtLoader, | |
YoutubeLoader, | |
WebBaseLoader, | |
TextLoader, | |
) | |
from langchain_community.document_loaders import UnstructuredMarkdownLoader | |
from llama_parse import LlamaParse | |
from langchain.schema import Document | |
import logging | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from ragatouille import RAGPretrainedModel | |
from langchain.chains import LLMChain | |
from langchain.llms import OpenAI | |
from langchain import PromptTemplate | |
try: | |
from modules.helpers import get_lecture_metadata | |
except: | |
from helpers import get_lecture_metadata | |
logger = logging.getLogger(__name__) | |
class PDFReader: | |
def __init__(self): | |
pass | |
def get_loader(self, pdf_path): | |
loader = PyMuPDFLoader(pdf_path) | |
return loader | |
def get_documents(self, loader): | |
return loader.load() | |
class FileReader: | |
def __init__(self): | |
self.pdf_reader = PDFReader() | |
def extract_text_from_pdf(self, pdf_path): | |
text = "" | |
with open(pdf_path, "rb") as file: | |
reader = PyPDF2.PdfReader(file) | |
num_pages = len(reader.pages) | |
for page_num in range(num_pages): | |
page = reader.pages[page_num] | |
text += page.extract_text() | |
return text | |
def download_pdf_from_url(self, pdf_url): | |
response = requests.get(pdf_url) | |
if response.status_code == 200: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: | |
temp_file.write(response.content) | |
temp_file_path = temp_file.name | |
return temp_file_path | |
else: | |
print("Failed to download PDF from URL:", pdf_url) | |
return None | |
def read_pdf(self, temp_file_path: str): | |
loader = self.pdf_reader.get_loader(temp_file_path) | |
documents = self.pdf_reader.get_documents(loader) | |
return documents | |
def read_txt(self, temp_file_path: str): | |
loader = TextLoader(temp_file_path, autodetect_encoding=True) | |
return loader.load() | |
def read_docx(self, temp_file_path: str): | |
loader = Docx2txtLoader(temp_file_path) | |
return loader.load() | |
def read_srt(self, temp_file_path: str): | |
subs = pysrt.open(temp_file_path) | |
text = "" | |
for sub in subs: | |
text += sub.text | |
return [Document(page_content=text)] | |
def read_youtube_transcript(self, url: str): | |
loader = YoutubeLoader.from_youtube_url( | |
url, add_video_info=True, language=["en"], translation="en" | |
) | |
return loader.load() | |
def read_html(self, url: str): | |
loader = WebBaseLoader(url) | |
return loader.load() | |
class ChunkProcessor: | |
def __init__(self, config): | |
self.config = config | |
if config["splitter_options"]["use_splitter"]: | |
if config["splitter_options"]["split_by_token"]: | |
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | |
chunk_size=config["splitter_options"]["chunk_size"], | |
chunk_overlap=config["splitter_options"]["chunk_overlap"], | |
separators=config["splitter_options"]["chunk_separators"], | |
disallowed_special=(), | |
) | |
else: | |
self.splitter = RecursiveCharacterTextSplitter( | |
chunk_size=config["splitter_options"]["chunk_size"], | |
chunk_overlap=config["splitter_options"]["chunk_overlap"], | |
separators=config["splitter_options"]["chunk_separators"], | |
disallowed_special=(), | |
) | |
else: | |
self.splitter = None | |
logger.info("ChunkProcessor instance created") | |
# def extract_metadata(self, document_content): | |
# llm = OpenAI() | |
# prompt_template = PromptTemplate( | |
# input_variables=["document_content"], | |
# template="Extract metadata for this document:\n\n{document_content}\n\nMetadata:", | |
# ) | |
# chain = LLMChain(llm=llm, prompt=prompt_template) | |
# metadata = chain.run(document_content=document_content) | |
# return metadata | |
def remove_delimiters(self, document_chunks: list): | |
for chunk in document_chunks: | |
for delimiter in self.config["splitter_options"]["delimiters_to_remove"]: | |
chunk.page_content = re.sub(delimiter, " ", chunk.page_content) | |
return document_chunks | |
def remove_chunks(self, document_chunks: list): | |
front = self.config["splitter_options"]["front_chunk_to_remove"] | |
end = self.config["splitter_options"]["last_chunks_to_remove"] | |
for _ in range(front): | |
del document_chunks[0] | |
for _ in range(end): | |
document_chunks.pop() | |
logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}") | |
return document_chunks | |
def process_chunks( | |
self, documents, file_type="txt", source="", page=0, metadata={} | |
): | |
documents = [Document(page_content=documents, source=source, page=page)] | |
if file_type == "txt": | |
document_chunks = self.splitter.split_documents(documents) | |
elif file_type == "pdf": | |
document_chunks = documents # Full page for now | |
# add the source and page number back to the metadata | |
for chunk in document_chunks: | |
chunk.metadata["source"] = source | |
chunk.metadata["page"] = page | |
# add the metadata extracted from the document | |
for key, value in metadata.items(): | |
chunk.metadata[key] = value | |
if self.config["splitter_options"]["remove_leftover_delimiters"]: | |
document_chunks = self.remove_delimiters(document_chunks) | |
if self.config["splitter_options"]["remove_chunks"]: | |
document_chunks = self.remove_chunks(document_chunks) | |
return document_chunks | |
def get_chunks(self, file_reader, uploaded_files, weblinks): | |
self.document_chunks_full = [] | |
self.parent_document_names = [] | |
self.child_document_names = [] | |
self.documents = [] | |
self.document_metadata = [] | |
lecture_metadata = get_lecture_metadata( | |
"https://dl4ds.github.io/sp2024/lectures/" | |
) # TODO: Use more efficiently | |
for file_index, file_path in enumerate(uploaded_files): | |
file_name = os.path.basename(file_path) | |
file_type = file_name.split(".")[-1].lower() | |
# try: | |
if file_type == "pdf": | |
documents = file_reader.read_pdf(file_path) | |
elif file_type == "txt": | |
documents = file_reader.read_txt(file_path) | |
elif file_type == "docx": | |
documents = file_reader.read_docx(file_path) | |
elif file_type == "srt": | |
documents = file_reader.read_srt(file_path) | |
else: | |
logger.warning(f"Unsupported file type: {file_type}") | |
continue | |
# full_text = "" | |
# for doc in documents: | |
# full_text += doc.page_content | |
# break # getting only first page for now | |
# extracted_metadata = self.extract_metadata(full_text) | |
for doc in documents: | |
page_num = doc.metadata.get("page", 0) | |
self.documents.append(doc.page_content) | |
self.document_metadata.append({"source": file_path, "page": page_num}) | |
if "lecture" in file_path.lower(): | |
metadata = lecture_metadata.get(file_path, {}) | |
metadata["source_type"] = "lecture" | |
self.document_metadata[-1].update(metadata) | |
else: | |
metadata = {"source_type": "other"} | |
self.child_document_names.append(f"{file_name}_{page_num}") | |
self.parent_document_names.append(file_name) | |
if self.config["embedding_options"]["db_option"] not in ["RAGatouille"]: | |
document_chunks = self.process_chunks( | |
self.documents[-1], | |
file_type, | |
source=file_path, | |
page=page_num, | |
metadata=metadata, | |
) | |
self.document_chunks_full.extend(document_chunks) | |
# except Exception as e: | |
# logger.error(f"Error processing file {file_name}: {str(e)}") | |
self.process_weblinks(file_reader, weblinks) | |
logger.info( | |
f"Total document chunks extracted: {len(self.document_chunks_full)}" | |
) | |
return ( | |
self.document_chunks_full, | |
self.child_document_names, | |
self.documents, | |
self.document_metadata, | |
) | |
def process_weblinks(self, file_reader, weblinks): | |
if weblinks[0] != "": | |
logger.info(f"Splitting weblinks: total of {len(weblinks)}") | |
for link_index, link in enumerate(weblinks): | |
try: | |
logger.info(f"\tSplitting link {link_index+1} : {link}") | |
if "youtube" in link: | |
documents = file_reader.read_youtube_transcript(link) | |
else: | |
documents = file_reader.read_html(link) | |
for doc in documents: | |
page_num = doc.metadata.get("page", 0) | |
self.documents.append(doc.page_content) | |
self.document_metadata.append( | |
{"source": link, "page": page_num} | |
) | |
self.child_document_names.append(f"{link}") | |
self.parent_document_names.append(link) | |
if self.config["embedding_options"]["db_option"] not in [ | |
"RAGatouille" | |
]: | |
document_chunks = self.process_chunks( | |
self.documents[-1], | |
"txt", | |
source=link, | |
page=0, | |
metadata={"source_type": "webpage"}, | |
) | |
self.document_chunks_full.extend(document_chunks) | |
except Exception as e: | |
logger.error( | |
f"Error splitting link {link_index+1} : {link}: {str(e)}" | |
) | |
class DataLoader: | |
def __init__(self, config): | |
self.file_reader = FileReader() | |
self.chunk_processor = ChunkProcessor(config) | |
def get_chunks(self, uploaded_files, weblinks): | |
return self.chunk_processor.get_chunks( | |
self.file_reader, uploaded_files, weblinks | |
) | |