Spaces:
Build error
Build error
File size: 10,590 Bytes
b83cc65 a052bdc f0018f2 57b7b8d ce9ef3e b83cc65 dbc26b1 b83cc65 57b7b8d dbc26b1 b83cc65 dbc26b1 b83cc65 57b7b8d a052bdc b83cc65 57b7b8d b83cc65 57b7b8d f0018f2 b83cc65 f0018f2 b83cc65 f0018f2 b83cc65 f0018f2 b83cc65 f0018f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
from urllib.parse import urlparse
import chainlit as cl
from langchain import PromptTemplate
import requests
from bs4 import BeautifulSoup
try:
from modules.constants import *
except:
from constants import *
"""
Ref: https://python.plainenglish.io/scraping-the-subpages-on-a-website-ea2d4e3db113
"""
class WebpageCrawler:
def __init__(self):
pass
def getdata(self, url):
r = requests.get(url)
return r.text
def url_exists(self, url):
try:
response = requests.head(url)
return response.status_code == 200
except requests.ConnectionError:
return False
def get_links(self, website_link, base_url=None):
if base_url is None:
base_url = website_link
html_data = self.getdata(website_link)
soup = BeautifulSoup(html_data, "html.parser")
list_links = []
for link in soup.find_all("a", href=True):
# clean the link
# remove empty spaces
link["href"] = link["href"].strip()
# Append to list if new link contains original link
if str(link["href"]).startswith((str(website_link))):
list_links.append(link["href"])
# Include all href that do not start with website link but with "/"
if str(link["href"]).startswith("/"):
if link["href"] not in self.dict_href_links:
print(link["href"])
self.dict_href_links[link["href"]] = None
link_with_www = base_url + link["href"][1:]
if self.url_exists(link_with_www):
print("adjusted link =", link_with_www)
list_links.append(link_with_www)
# Convert list of links to dictionary and define keys as the links and the values as "Not-checked"
dict_links = dict.fromkeys(list_links, "Not-checked")
return dict_links
def get_subpage_links(self, l, base_url):
for link in tqdm(l):
print("checking link:", link)
if not link.endswith("/"):
l[link] = "Checked"
dict_links_subpages = {}
else:
# If not crawled through this page start crawling and get links
if l[link] == "Not-checked":
dict_links_subpages = self.get_links(link, base_url)
# Change the dictionary value of the link to "Checked"
l[link] = "Checked"
else:
# Create an empty dictionary in case every link is checked
dict_links_subpages = {}
# Add new dictionary to old dictionary
l = {**dict_links_subpages, **l}
return l
def get_all_pages(self, url, base_url):
dict_links = {url: "Not-checked"}
self.dict_href_links = {}
counter, counter2 = None, 0
while counter != 0:
counter2 += 1
dict_links2 = self.get_subpage_links(dict_links, base_url)
# Count number of non-values and set counter to 0 if there are no values within the dictionary equal to the string "Not-checked"
# https://stackoverflow.com/questions/48371856/count-the-number-of-occurrences-of-a-certain-value-in-a-dictionary-in-python
counter = sum(value == "Not-checked" for value in dict_links2.values())
dict_links = dict_links2
checked_urls = [
url for url, status in dict_links.items() if status == "Checked"
]
return checked_urls
def get_urls_from_file(file_path: str):
"""
Function to get urls from a file
"""
with open(file_path, "r") as f:
urls = f.readlines()
urls = [url.strip() for url in urls]
return urls
def get_base_url(url):
parsed_url = urlparse(url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}/"
return base_url
def get_prompt(config):
if config["llm_params"]["use_history"]:
if config["llm_params"]["llm_loader"] == "local_llm":
custom_prompt_template = tinyllama_prompt_template_with_history
elif config["llm_params"]["llm_loader"] == "openai":
custom_prompt_template = openai_prompt_template_with_history
# else:
# custom_prompt_template = tinyllama_prompt_template_with_history # default
prompt = PromptTemplate(
template=custom_prompt_template,
input_variables=["context", "chat_history", "question"],
)
else:
if config["llm_params"]["llm_loader"] == "local_llm":
custom_prompt_template = tinyllama_prompt_template
elif config["llm_params"]["llm_loader"] == "openai":
custom_prompt_template = openai_prompt_template
# else:
# custom_prompt_template = tinyllama_prompt_template
prompt = PromptTemplate(
template=custom_prompt_template,
input_variables=["context", "question"],
)
return prompt
def get_sources(res, answer):
source_elements = []
source_dict = {} # Dictionary to store URL elements
for idx, source in enumerate(res["source_documents"]):
source_metadata = source.metadata
url = source_metadata["source"]
score = source_metadata.get("score", "N/A")
page = source_metadata.get("page", 1)
lecture_tldr = source_metadata.get("tldr", "N/A")
lecture_recording = source_metadata.get("lecture_recording", "N/A")
suggested_readings = source_metadata.get("suggested_readings", "N/A")
source_type = source_metadata.get("source_type", "N/A")
url_name = f"{url}_{page}"
if url_name not in source_dict:
source_dict[url_name] = {
"text": source.page_content,
"url": url,
"score": score,
"page": page,
"lecture_tldr": lecture_tldr,
"lecture_recording": lecture_recording,
"suggested_readings": suggested_readings,
"source_type": source_type,
}
else:
source_dict[url_name]["text"] += f"\n\n{source.page_content}"
# First, display the answer
full_answer = "**Answer:**\n"
full_answer += answer
# Then, display the sources
full_answer += "\n\n**Sources:**\n"
for idx, (url_name, source_data) in enumerate(source_dict.items()):
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"
name = f"Source {idx + 1} Text\n"
full_answer += name
source_elements.append(cl.Text(name=name, content=source_data["text"]))
# Add a PDF element if the source is a PDF file
if source_data["url"].lower().endswith(".pdf"):
name = f"Source {idx + 1} PDF\n"
full_answer += name
pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
source_elements.append(cl.Pdf(name=name, url=pdf_url))
# Finally, include lecture metadata for each unique source
# displayed_urls = set()
# full_answer += "\n**Metadata:**\n"
# for url_name, source_data in source_dict.items():
# if source_data["url"] not in displayed_urls:
# full_answer += f"\nSource: {source_data['url']}\n"
# full_answer += f"Type: {source_data['source_type']}\n"
# full_answer += f"TL;DR: {source_data['lecture_tldr']}\n"
# full_answer += f"Lecture Recording: {source_data['lecture_recording']}\n"
# full_answer += f"Suggested Readings: {source_data['suggested_readings']}\n"
# displayed_urls.add(source_data["url"])
full_answer += "\n**Metadata:**\n"
for url_name, source_data in source_dict.items():
full_answer += f"\nSource: {source_data['url']}\n"
full_answer += f"Page: {source_data['page']}\n"
full_answer += f"Type: {source_data['source_type']}\n"
full_answer += f"TL;DR: {source_data['lecture_tldr']}\n"
full_answer += f"Lecture Recording: {source_data['lecture_recording']}\n"
full_answer += f"Suggested Readings: {source_data['suggested_readings']}\n"
return full_answer, source_elements
def get_lecture_metadata(schedule_url):
"""
Function to get the lecture metadata from the schedule URL.
"""
lecture_metadata = {}
# Get the main schedule page content
r = requests.get(schedule_url)
soup = BeautifulSoup(r.text, "html.parser")
# Find all lecture blocks
lecture_blocks = soup.find_all("div", class_="lecture-container")
for block in lecture_blocks:
try:
# Extract the lecture title
title = block.find("span", style="font-weight: bold;").text.strip()
# Extract the TL;DR
tldr = block.find("strong", text="tl;dr:").next_sibling.strip()
# Extract the link to the slides
slides_link_tag = block.find("a", title="Download slides")
slides_link = slides_link_tag["href"].strip() if slides_link_tag else None
# Extract the link to the lecture recording
recording_link_tag = block.find("a", title="Download lecture recording")
recording_link = (
recording_link_tag["href"].strip() if recording_link_tag else None
)
# Extract suggested readings or summary if available
suggested_readings_tag = block.find("p", text="Suggested Readings:")
if suggested_readings_tag:
suggested_readings = suggested_readings_tag.find_next_sibling("ul")
if suggested_readings:
suggested_readings = suggested_readings.get_text(
separator="\n"
).strip()
else:
suggested_readings = "No specific readings provided."
else:
suggested_readings = "No specific readings provided."
# Add to the dictionary
slides_link = f"https://dl4ds.github.io{slides_link}"
lecture_metadata[slides_link] = {
"tldr": tldr,
"title": title,
"lecture_recording": recording_link,
"suggested_readings": suggested_readings,
}
except Exception as e:
print(f"Error processing block: {e}")
continue
return lecture_metadata
|