File size: 10,590 Bytes
b83cc65
 
 
 
 
a052bdc
f0018f2
 
57b7b8d
ce9ef3e
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc26b1
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
dbc26b1
b83cc65
 
dbc26b1
 
 
 
 
 
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
a052bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83cc65
57b7b8d
b83cc65
 
 
 
 
 
 
57b7b8d
f0018f2
 
 
 
 
b83cc65
f0018f2
 
 
 
 
 
 
 
 
 
 
 
 
 
b83cc65
f0018f2
b83cc65
f0018f2
 
 
b83cc65
f0018f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
from urllib.parse import urlparse
import chainlit as cl
from langchain import PromptTemplate
import requests
from bs4 import BeautifulSoup

try:
    from modules.constants import *
except:
    from constants import *

"""
Ref: https://python.plainenglish.io/scraping-the-subpages-on-a-website-ea2d4e3db113
"""


class WebpageCrawler:
    def __init__(self):
        pass

    def getdata(self, url):
        r = requests.get(url)
        return r.text

    def url_exists(self, url):
        try:
            response = requests.head(url)
            return response.status_code == 200
        except requests.ConnectionError:
            return False

    def get_links(self, website_link, base_url=None):
        if base_url is None:
            base_url = website_link
        html_data = self.getdata(website_link)
        soup = BeautifulSoup(html_data, "html.parser")
        list_links = []
        for link in soup.find_all("a", href=True):

            # clean the link
            # remove empty spaces
            link["href"] = link["href"].strip()
            # Append to list if new link contains original link
            if str(link["href"]).startswith((str(website_link))):
                list_links.append(link["href"])

            # Include all href that do not start with website link but with "/"
            if str(link["href"]).startswith("/"):
                if link["href"] not in self.dict_href_links:
                    print(link["href"])
                    self.dict_href_links[link["href"]] = None
                    link_with_www = base_url + link["href"][1:]
                    if self.url_exists(link_with_www):
                        print("adjusted link =", link_with_www)
                        list_links.append(link_with_www)

        # Convert list of links to dictionary and define keys as the links and the values as "Not-checked"
        dict_links = dict.fromkeys(list_links, "Not-checked")
        return dict_links

    def get_subpage_links(self, l, base_url):
        for link in tqdm(l):
            print("checking link:", link)
            if not link.endswith("/"):
                l[link] = "Checked"
                dict_links_subpages = {}
            else:
                # If not crawled through this page start crawling and get links
                if l[link] == "Not-checked":
                    dict_links_subpages = self.get_links(link, base_url)
                    # Change the dictionary value of the link to "Checked"
                    l[link] = "Checked"
                else:
                    # Create an empty dictionary in case every link is checked
                    dict_links_subpages = {}
            # Add new dictionary to old dictionary
            l = {**dict_links_subpages, **l}
        return l

    def get_all_pages(self, url, base_url):
        dict_links = {url: "Not-checked"}
        self.dict_href_links = {}
        counter, counter2 = None, 0
        while counter != 0:
            counter2 += 1
            dict_links2 = self.get_subpage_links(dict_links, base_url)
            # Count number of non-values and set counter to 0 if there are no values within the dictionary equal to the string "Not-checked"
            # https://stackoverflow.com/questions/48371856/count-the-number-of-occurrences-of-a-certain-value-in-a-dictionary-in-python
            counter = sum(value == "Not-checked" for value in dict_links2.values())
            dict_links = dict_links2
        checked_urls = [
            url for url, status in dict_links.items() if status == "Checked"
        ]
        return checked_urls


def get_urls_from_file(file_path: str):
    """
    Function to get urls from a file
    """
    with open(file_path, "r") as f:
        urls = f.readlines()
    urls = [url.strip() for url in urls]
    return urls


def get_base_url(url):
    parsed_url = urlparse(url)
    base_url = f"{parsed_url.scheme}://{parsed_url.netloc}/"
    return base_url


def get_prompt(config):
    if config["llm_params"]["use_history"]:
        if config["llm_params"]["llm_loader"] == "local_llm":
            custom_prompt_template = tinyllama_prompt_template_with_history
        elif config["llm_params"]["llm_loader"] == "openai":
            custom_prompt_template = openai_prompt_template_with_history
        # else:
        #     custom_prompt_template = tinyllama_prompt_template_with_history # default
        prompt = PromptTemplate(
            template=custom_prompt_template,
            input_variables=["context", "chat_history", "question"],
        )
    else:
        if config["llm_params"]["llm_loader"] == "local_llm":
            custom_prompt_template = tinyllama_prompt_template
        elif config["llm_params"]["llm_loader"] == "openai":
            custom_prompt_template = openai_prompt_template
        # else:
        #     custom_prompt_template = tinyllama_prompt_template
        prompt = PromptTemplate(
            template=custom_prompt_template,
            input_variables=["context", "question"],
        )
    return prompt


def get_sources(res, answer):
    source_elements = []
    source_dict = {}  # Dictionary to store URL elements

    for idx, source in enumerate(res["source_documents"]):
        source_metadata = source.metadata
        url = source_metadata["source"]
        score = source_metadata.get("score", "N/A")
        page = source_metadata.get("page", 1)

        lecture_tldr = source_metadata.get("tldr", "N/A")
        lecture_recording = source_metadata.get("lecture_recording", "N/A")
        suggested_readings = source_metadata.get("suggested_readings", "N/A")

        source_type = source_metadata.get("source_type", "N/A")

        url_name = f"{url}_{page}"
        if url_name not in source_dict:
            source_dict[url_name] = {
                "text": source.page_content,
                "url": url,
                "score": score,
                "page": page,
                "lecture_tldr": lecture_tldr,
                "lecture_recording": lecture_recording,
                "suggested_readings": suggested_readings,
                "source_type": source_type,
            }
        else:
            source_dict[url_name]["text"] += f"\n\n{source.page_content}"

    # First, display the answer
    full_answer = "**Answer:**\n"
    full_answer += answer

    # Then, display the sources
    full_answer += "\n\n**Sources:**\n"
    for idx, (url_name, source_data) in enumerate(source_dict.items()):
        full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n"

        name = f"Source {idx + 1} Text\n"
        full_answer += name
        source_elements.append(cl.Text(name=name, content=source_data["text"]))

        # Add a PDF element if the source is a PDF file
        if source_data["url"].lower().endswith(".pdf"):
            name = f"Source {idx + 1} PDF\n"
            full_answer += name
            pdf_url = f"{source_data['url']}#page={source_data['page']+1}"
            source_elements.append(cl.Pdf(name=name, url=pdf_url))

    # Finally, include lecture metadata for each unique source
    # displayed_urls = set()
    # full_answer += "\n**Metadata:**\n"
    # for url_name, source_data in source_dict.items():
    #     if source_data["url"] not in displayed_urls:
    #         full_answer += f"\nSource: {source_data['url']}\n"
    #         full_answer += f"Type: {source_data['source_type']}\n"
    #         full_answer += f"TL;DR: {source_data['lecture_tldr']}\n"
    #         full_answer += f"Lecture Recording: {source_data['lecture_recording']}\n"
    #         full_answer += f"Suggested Readings: {source_data['suggested_readings']}\n"
    #         displayed_urls.add(source_data["url"])
    full_answer += "\n**Metadata:**\n"
    for url_name, source_data in source_dict.items():
        full_answer += f"\nSource: {source_data['url']}\n"
        full_answer += f"Page: {source_data['page']}\n"
        full_answer += f"Type: {source_data['source_type']}\n"
        full_answer += f"TL;DR: {source_data['lecture_tldr']}\n"
        full_answer += f"Lecture Recording: {source_data['lecture_recording']}\n"
        full_answer += f"Suggested Readings: {source_data['suggested_readings']}\n"

    return full_answer, source_elements


def get_lecture_metadata(schedule_url):
    """
    Function to get the lecture metadata from the schedule URL.
    """
    lecture_metadata = {}

    # Get the main schedule page content
    r = requests.get(schedule_url)
    soup = BeautifulSoup(r.text, "html.parser")

    # Find all lecture blocks
    lecture_blocks = soup.find_all("div", class_="lecture-container")

    for block in lecture_blocks:
        try:
            # Extract the lecture title
            title = block.find("span", style="font-weight: bold;").text.strip()

            # Extract the TL;DR
            tldr = block.find("strong", text="tl;dr:").next_sibling.strip()

            # Extract the link to the slides
            slides_link_tag = block.find("a", title="Download slides")
            slides_link = slides_link_tag["href"].strip() if slides_link_tag else None

            # Extract the link to the lecture recording
            recording_link_tag = block.find("a", title="Download lecture recording")
            recording_link = (
                recording_link_tag["href"].strip() if recording_link_tag else None
            )

            # Extract suggested readings or summary if available
            suggested_readings_tag = block.find("p", text="Suggested Readings:")
            if suggested_readings_tag:
                suggested_readings = suggested_readings_tag.find_next_sibling("ul")
                if suggested_readings:
                    suggested_readings = suggested_readings.get_text(
                        separator="\n"
                    ).strip()
                else:
                    suggested_readings = "No specific readings provided."
            else:
                suggested_readings = "No specific readings provided."

            # Add to the dictionary
            slides_link = f"https://dl4ds.github.io{slides_link}"
            lecture_metadata[slides_link] = {
                "tldr": tldr,
                "title": title,
                "lecture_recording": recording_link,
                "suggested_readings": suggested_readings,
            }
        except Exception as e:
            print(f"Error processing block: {e}")
            continue

    return lecture_metadata