Spaces:
Build error
Build error
File size: 9,377 Bytes
6158da4 b83cc65 6158da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import re
import pysrt
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
PyMuPDFLoader,
Docx2txtLoader,
YoutubeLoader,
WebBaseLoader,
TextLoader,
)
from langchain.schema import Document
from tempfile import NamedTemporaryFile
import logging
logger = logging.getLogger(__name__)
class DataLoader:
def __init__(self, config):
"""
Class for handling all data extraction and chunking
Inputs:
config - dictionary from yaml file, containing all important parameters
"""
self.config = config
self.remove_leftover_delimiters = config["splitter_options"][
"remove_leftover_delimiters"
]
# Main list of all documents
self.document_chunks_full = []
self.document_names = []
if config["splitter_options"]["use_splitter"]:
if config["splitter_options"]["split_by_token"]:
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
)
else:
self.splitter = RecursiveCharacterTextSplitter(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
)
else:
self.splitter = None
logger.info("InfoLoader instance created")
def get_chunks(self, uploaded_files, weblinks):
# Main list of all documents
self.document_chunks_full = []
self.document_names = []
def remove_delimiters(document_chunks: list):
"""
Helper function to remove remaining delimiters in document chunks
"""
for chunk in document_chunks:
for delimiter in self.config["splitter_options"][
"delimiters_to_remove"
]:
chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
return document_chunks
def remove_chunks(document_chunks: list):
"""
Helper function to remove any unwanted document chunks after splitting
"""
front = self.config["splitter_options"]["front_chunk_to_remove"]
end = self.config["splitter_options"]["last_chunks_to_remove"]
# Remove pages
for _ in range(front):
del document_chunks[0]
for _ in range(end):
document_chunks.pop()
logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}")
return document_chunks
def get_pdf(temp_file_path: str, title: str):
"""
Function to process PDF files
"""
loader = PyMuPDFLoader(
temp_file_path
) # This loader preserves more metadata
if self.splitter:
document_chunks = self.splitter.split_documents(loader.load())
else:
document_chunks = loader.load()
if "title" in document_chunks[0].metadata.keys():
title = document_chunks[0].metadata["title"]
logger.info(
f"\t\tOriginal no. of pages: {document_chunks[0].metadata['total_pages']}"
)
return title, document_chunks
def get_txt(temp_file_path: str, title: str):
"""
Function to process TXT files
"""
loader = TextLoader(temp_file_path, autodetect_encoding=True)
if self.splitter:
document_chunks = self.splitter.split_documents(loader.load())
else:
document_chunks = loader.load()
# Update the metadata
for chunk in document_chunks:
chunk.metadata["source"] = title
chunk.metadata["page"] = "N/A"
return title, document_chunks
def get_srt(temp_file_path: str, title: str):
"""
Function to process SRT files
"""
subs = pysrt.open(temp_file_path)
text = ""
for sub in subs:
text += sub.text
document_chunks = [Document(page_content=text)]
if self.splitter:
document_chunks = self.splitter.split_documents(document_chunks)
# Update the metadata
for chunk in document_chunks:
chunk.metadata["source"] = title
chunk.metadata["page"] = "N/A"
return title, document_chunks
def get_docx(temp_file_path: str, title: str):
"""
Function to process DOCX files
"""
loader = Docx2txtLoader(temp_file_path)
if self.splitter:
document_chunks = self.splitter.split_documents(loader.load())
else:
document_chunks = loader.load()
# Update the metadata
for chunk in document_chunks:
chunk.metadata["source"] = title
chunk.metadata["page"] = "N/A"
return title, document_chunks
def get_youtube_transcript(url: str):
"""
Function to retrieve youtube transcript and process text
"""
loader = YoutubeLoader.from_youtube_url(
url, add_video_info=True, language=["en"], translation="en"
)
if self.splitter:
document_chunks = self.splitter.split_documents(loader.load())
else:
document_chunks = loader.load_and_split()
# Replace the source with title (for display in st UI later)
for chunk in document_chunks:
chunk.metadata["source"] = chunk.metadata["title"]
logger.info(chunk.metadata["title"])
return title, document_chunks
def get_html(url: str):
"""
Function to process websites via HTML files
"""
loader = WebBaseLoader(url)
if self.splitter:
document_chunks = self.splitter.split_documents(loader.load())
else:
document_chunks = loader.load_and_split()
title = document_chunks[0].metadata["title"]
logger.info(document_chunks[0].metadata)
return title, document_chunks
# Handle file by file
for file_index, file_path in enumerate(uploaded_files):
file_name = file_path.split("/")[-1]
file_type = file_name.split(".")[-1]
# Handle different file types
if file_type == "pdf":
title, document_chunks = get_pdf(file_path, file_name)
elif file_type == "txt":
title, document_chunks = get_txt(file_path, file_name)
elif file_type == "docx":
title, document_chunks = get_docx(file_path, file_name)
elif file_type == "srt":
title, document_chunks = get_srt(file_path, file_name)
# Additional wrangling - Remove leftover delimiters and any specified chunks
if self.remove_leftover_delimiters:
document_chunks = remove_delimiters(document_chunks)
if self.config["splitter_options"]["remove_chunks"]:
document_chunks = remove_chunks(document_chunks)
logger.info(f"\t\tExtracted no. of chunks: {len(document_chunks)}")
self.document_names.append(title)
self.document_chunks_full.extend(document_chunks)
# Handle youtube links:
if weblinks[0] != "":
logger.info(f"Splitting weblinks: total of {len(weblinks)}")
# Handle link by link
for link_index, link in enumerate(weblinks):
try:
logger.info(f"\tSplitting link {link_index+1} : {link}")
if "youtube" in link:
title, document_chunks = get_youtube_transcript(link)
else:
title, document_chunks = get_html(link)
# Additional wrangling - Remove leftover delimiters and any specified chunks
if self.remove_leftover_delimiters:
document_chunks = remove_delimiters(document_chunks)
if self.config["splitter_options"]["remove_chunks"]:
document_chunks = remove_chunks(document_chunks)
print(f"\t\tExtracted no. of chunks: {len(document_chunks)}")
self.document_names.append(title)
self.document_chunks_full.extend(document_chunks)
except:
logger.info(f"\t\tError splitting link {link_index+1} : {link}")
logger.info(
f"\tNumber of document chunks extracted in total: {len(self.document_chunks_full)}\n\n"
)
return self.document_chunks_full, self.document_names
|