|
import gradio as gr |
|
import requests |
|
import os |
|
import gradio as gr |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipe = pipe.to("cpu") |
|
|
|
|
|
|
|
|
|
|
|
|
|
name = "andite/anything-v4.0" |
|
model = gr.Interface.load(f"models/{name}") |
|
|
|
|
|
o = os.getenv("P") |
|
h = "Q" |
|
def ac(): |
|
def im_fn(put): |
|
if h == o: |
|
return model(put,negative_prompt = "blury") |
|
elif h != o: |
|
return(None) |
|
def im_pipe(put): |
|
return image = pipe(prompt, negative_prompt="blury").images[0] |
|
|
|
''' |
|
num_images_per_prompt=n_images, |
|
num_inference_steps = int(steps), |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator, |
|
callback=pipe_callback) |
|
''' |
|
with gr.Blocks() as b: |
|
put = gr.Textbox() |
|
with gr.Row(): |
|
out1 = gr.Image() |
|
out2 = gr.Image() |
|
with gr.Row(): |
|
btn1 = gr.Button() |
|
btn2 = gr.Button() |
|
btn1.click(im_fn,put,out1) |
|
btn2.click(im_pipe,put,out2) |
|
|
|
b.queue(concurrency_count=100).launch() |
|
ac() |