Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AGPL: a notification must be added stating that changes have been made to that file.
|
2 |
+
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
from random import randint
|
9 |
+
|
10 |
+
from tortoise.api import MODELS_DIR
|
11 |
+
from tortoise.inference import (
|
12 |
+
infer_on_texts,
|
13 |
+
run_and_save_tts,
|
14 |
+
split_and_recombine_text,
|
15 |
+
)
|
16 |
+
from tortoise.utils.diffusion import SAMPLERS
|
17 |
+
from app_utils.filepicker import st_file_selector
|
18 |
+
from app_utils.conf import TortoiseConfig
|
19 |
+
|
20 |
+
from app_utils.funcs import (
|
21 |
+
timeit,
|
22 |
+
load_model,
|
23 |
+
list_voices,
|
24 |
+
load_voice_conditionings,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
LATENT_MODES = [
|
29 |
+
"Tortoise original (bad)",
|
30 |
+
"average per 4.27s (broken on small files)",
|
31 |
+
"average per voice file (broken on small files)",
|
32 |
+
]
|
33 |
+
|
34 |
+
def main():
|
35 |
+
conf = TortoiseConfig()
|
36 |
+
|
37 |
+
with st.expander("Create New Voice", expanded=True):
|
38 |
+
if "file_uploader_key" not in st.session_state:
|
39 |
+
st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
|
40 |
+
st.session_state["text_input_key"] = str(randint(1000, 100000000))
|
41 |
+
|
42 |
+
uploaded_files = st.file_uploader(
|
43 |
+
"Upload Audio Samples for a New Voice",
|
44 |
+
accept_multiple_files=True,
|
45 |
+
type=["wav"],
|
46 |
+
key=st.session_state["file_uploader_key"]
|
47 |
+
)
|
48 |
+
|
49 |
+
voice_name = st.text_input(
|
50 |
+
"New Voice Name",
|
51 |
+
help="Enter a name for your new voice.",
|
52 |
+
value="",
|
53 |
+
key=st.session_state["text_input_key"]
|
54 |
+
)
|
55 |
+
|
56 |
+
create_voice_button = st.button(
|
57 |
+
"Create Voice",
|
58 |
+
disabled = ((voice_name.strip() == "") | (len(uploaded_files) == 0))
|
59 |
+
)
|
60 |
+
if create_voice_button:
|
61 |
+
st.write(st.session_state)
|
62 |
+
with st.spinner(f"Creating new voice: {voice_name}"):
|
63 |
+
new_voice_name = voice_name.strip().replace(" ", "_")
|
64 |
+
|
65 |
+
voices_dir = f'./tortoise/voices/{new_voice_name}/'
|
66 |
+
if os.path.exists(voices_dir):
|
67 |
+
shutil.rmtree(voices_dir)
|
68 |
+
os.makedirs(voices_dir)
|
69 |
+
|
70 |
+
for index, uploaded_file in enumerate(uploaded_files):
|
71 |
+
bytes_data = uploaded_file.read()
|
72 |
+
with open(f"{voices_dir}voice_sample{index}.wav", "wb") as wav_file:
|
73 |
+
wav_file.write(bytes_data)
|
74 |
+
|
75 |
+
st.session_state["text_input_key"] = str(randint(1000, 100000000))
|
76 |
+
st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
|
77 |
+
st.experimental_rerun()
|
78 |
+
|
79 |
+
text = st.text_area(
|
80 |
+
"Text",
|
81 |
+
help="Text to speak.",
|
82 |
+
value="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.",
|
83 |
+
)
|
84 |
+
|
85 |
+
voices = [v for v in os.listdir("tortoise/voices") if v != "cond_latent_example"]
|
86 |
+
|
87 |
+
voice = st.selectbox(
|
88 |
+
"Voice",
|
89 |
+
voices,
|
90 |
+
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) "
|
91 |
+
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.",
|
92 |
+
index=0,
|
93 |
+
)
|
94 |
+
preset = st.selectbox(
|
95 |
+
"Preset",
|
96 |
+
(
|
97 |
+
"single_sample",
|
98 |
+
"ultra_fast",
|
99 |
+
"very_fast",
|
100 |
+
"ultra_fast_old",
|
101 |
+
"fast",
|
102 |
+
"standard",
|
103 |
+
"high_quality",
|
104 |
+
),
|
105 |
+
help="Which voice preset to use.",
|
106 |
+
index=1,
|
107 |
+
)
|
108 |
+
with st.expander("Advanced"):
|
109 |
+
col1, col2 = st.columns(2)
|
110 |
+
with col1:
|
111 |
+
"""#### Model parameters"""
|
112 |
+
candidates = st.number_input(
|
113 |
+
"Candidates",
|
114 |
+
help="How many output candidates to produce per-voice.",
|
115 |
+
value=1,
|
116 |
+
)
|
117 |
+
latent_averaging_mode = st.radio(
|
118 |
+
"Latent averaging mode",
|
119 |
+
LATENT_MODES,
|
120 |
+
help="How voice samples should be averaged together.",
|
121 |
+
index=0,
|
122 |
+
)
|
123 |
+
sampler = st.radio(
|
124 |
+
"Sampler",
|
125 |
+
#SAMPLERS,
|
126 |
+
["dpm++2m", "p", "ddim"],
|
127 |
+
help="Diffusion sampler. Note that dpm++2m is experimental and typically requires more steps.",
|
128 |
+
index=1,
|
129 |
+
)
|
130 |
+
steps = st.number_input(
|
131 |
+
"Steps",
|
132 |
+
help="Override the steps used for diffusion (default depends on preset)",
|
133 |
+
value=10,
|
134 |
+
)
|
135 |
+
seed = st.number_input(
|
136 |
+
"Seed",
|
137 |
+
help="Random seed which can be used to reproduce results.",
|
138 |
+
value=-1,
|
139 |
+
)
|
140 |
+
if seed == -1:
|
141 |
+
seed = None
|
142 |
+
voice_fixer = st.checkbox(
|
143 |
+
"Voice fixer",
|
144 |
+
help="Use `voicefixer` to improve audio quality. This is a post-processing step which can be applied to any output.",
|
145 |
+
value=True,
|
146 |
+
)
|
147 |
+
"""#### Directories"""
|
148 |
+
output_path = st.text_input(
|
149 |
+
"Output Path", help="Where to store outputs.", value="results/"
|
150 |
+
)
|
151 |
+
|
152 |
+
with col2:
|
153 |
+
"""#### Optimizations"""
|
154 |
+
high_vram = not st.checkbox(
|
155 |
+
"Low VRAM",
|
156 |
+
help="Re-enable default offloading behaviour of tortoise",
|
157 |
+
value=True,
|
158 |
+
)
|
159 |
+
half = st.checkbox(
|
160 |
+
"Half-Precision",
|
161 |
+
help="Enable autocast to half precision for autoregressive model",
|
162 |
+
value=False,
|
163 |
+
)
|
164 |
+
kv_cache = st.checkbox(
|
165 |
+
"Key-Value Cache",
|
166 |
+
help="Enable kv_cache usage, leading to drastic speedups but worse memory usage",
|
167 |
+
value=True,
|
168 |
+
)
|
169 |
+
cond_free = st.checkbox(
|
170 |
+
"Conditioning Free",
|
171 |
+
help="Force conditioning free diffusion",
|
172 |
+
value=True,
|
173 |
+
)
|
174 |
+
no_cond_free = st.checkbox(
|
175 |
+
"Force Not Conditioning Free",
|
176 |
+
help="Force disable conditioning free diffusion",
|
177 |
+
value=False,
|
178 |
+
)
|
179 |
+
|
180 |
+
"""#### Text Splitting"""
|
181 |
+
min_chars_to_split = st.number_input(
|
182 |
+
"Min Chars to Split",
|
183 |
+
help="Minimum number of characters to split text on",
|
184 |
+
min_value=50,
|
185 |
+
value=200,
|
186 |
+
step=1,
|
187 |
+
)
|
188 |
+
|
189 |
+
"""#### Debug"""
|
190 |
+
produce_debug_state = st.checkbox(
|
191 |
+
"Produce Debug State",
|
192 |
+
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.",
|
193 |
+
value=True,
|
194 |
+
)
|
195 |
+
|
196 |
+
ar_checkpoint = "."
|
197 |
+
diff_checkpoint = "."
|
198 |
+
if st.button("Update Basic Settings"):
|
199 |
+
conf.update(
|
200 |
+
EXTRA_VOICES_DIR=extra_voices_dir,
|
201 |
+
LOW_VRAM=not high_vram,
|
202 |
+
AR_CHECKPOINT=ar_checkpoint,
|
203 |
+
DIFF_CHECKPOINT=diff_checkpoint,
|
204 |
+
)
|
205 |
+
|
206 |
+
ar_checkpoint = None
|
207 |
+
diff_checkpoint = None
|
208 |
+
tts = load_model(MODELS_DIR, high_vram, kv_cache, ar_checkpoint, diff_checkpoint)
|
209 |
+
|
210 |
+
if st.button("Start"):
|
211 |
+
assert latent_averaging_mode
|
212 |
+
assert preset
|
213 |
+
assert voice
|
214 |
+
|
215 |
+
def show_generation(fp, filename: str):
|
216 |
+
"""
|
217 |
+
audio_buffer = BytesIO()
|
218 |
+
save_gen_with_voicefix(g, audio_buffer, squeeze=False)
|
219 |
+
torchaudio.save(audio_buffer, g, 24000, format='wav')
|
220 |
+
"""
|
221 |
+
st.audio(str(fp), format="audio/wav")
|
222 |
+
st.download_button(
|
223 |
+
"Download sample",
|
224 |
+
str(fp),
|
225 |
+
file_name=filename, # this doesn't actually seem to work lol
|
226 |
+
)
|
227 |
+
|
228 |
+
with st.spinner(
|
229 |
+
f"Generating {candidates} candidates for voice {voice} (seed={seed}). You can see progress in the terminal"
|
230 |
+
):
|
231 |
+
os.makedirs(output_path, exist_ok=True)
|
232 |
+
|
233 |
+
selected_voices = voice.split(",")
|
234 |
+
for k, selected_voice in enumerate(selected_voices):
|
235 |
+
if "&" in selected_voice:
|
236 |
+
voice_sel = selected_voice.split("&")
|
237 |
+
else:
|
238 |
+
voice_sel = [selected_voice]
|
239 |
+
voice_samples, conditioning_latents = load_voice_conditionings(
|
240 |
+
voice_sel, []
|
241 |
+
)
|
242 |
+
|
243 |
+
voice_path = Path(os.path.join(output_path, selected_voice))
|
244 |
+
|
245 |
+
with timeit(
|
246 |
+
f"Generating {candidates} candidates for voice {selected_voice} (seed={seed})"
|
247 |
+
):
|
248 |
+
nullable_kwargs = {
|
249 |
+
k: v
|
250 |
+
for k, v in zip(
|
251 |
+
["sampler", "diffusion_iterations", "cond_free"],
|
252 |
+
[sampler, steps, cond_free],
|
253 |
+
)
|
254 |
+
if v is not None
|
255 |
+
}
|
256 |
+
|
257 |
+
def call_tts(text: str):
|
258 |
+
return tts.tts_with_preset(
|
259 |
+
text,
|
260 |
+
k=candidates,
|
261 |
+
voice_samples=voice_samples,
|
262 |
+
conditioning_latents=conditioning_latents,
|
263 |
+
preset=preset,
|
264 |
+
use_deterministic_seed=seed,
|
265 |
+
return_deterministic_state=True,
|
266 |
+
cvvp_amount=0.0,
|
267 |
+
half=half,
|
268 |
+
latent_averaging_mode=LATENT_MODES.index(
|
269 |
+
latent_averaging_mode
|
270 |
+
),
|
271 |
+
**nullable_kwargs,
|
272 |
+
)
|
273 |
+
|
274 |
+
if len(text) < min_chars_to_split:
|
275 |
+
filepaths = run_and_save_tts(
|
276 |
+
call_tts,
|
277 |
+
text,
|
278 |
+
voice_path,
|
279 |
+
return_deterministic_state=True,
|
280 |
+
return_filepaths=True,
|
281 |
+
voicefixer=voice_fixer,
|
282 |
+
)
|
283 |
+
for i, fp in enumerate(filepaths):
|
284 |
+
show_generation(fp, f"{selected_voice}-text-{i}.wav")
|
285 |
+
else:
|
286 |
+
desired_length = int(min_chars_to_split)
|
287 |
+
texts = split_and_recombine_text(
|
288 |
+
text, desired_length, desired_length + 100
|
289 |
+
)
|
290 |
+
filepaths = infer_on_texts(
|
291 |
+
call_tts,
|
292 |
+
texts,
|
293 |
+
voice_path,
|
294 |
+
return_deterministic_state=True,
|
295 |
+
return_filepaths=True,
|
296 |
+
lines_to_regen=set(range(len(texts))),
|
297 |
+
voicefixer=voice_fixer,
|
298 |
+
)
|
299 |
+
for i, fp in enumerate(filepaths):
|
300 |
+
show_generation(fp, f"{selected_voice}-text-{i}.wav")
|
301 |
+
if produce_debug_state:
|
302 |
+
"""Debug states can be found in the output directory"""
|
303 |
+
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
main()
|