divya-22 commited on
Commit
28d3e59
·
1 Parent(s): 6c535fe

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/test.png filter=lfs diff=lfs merge=lfs -text
data/catstatue_rgba.png ADDED
data/csm_luigi_rgba.png ADDED
data/test.png ADDED

Git LFS Details

  • SHA256: 479f4fa9a5d2fcbf81240533f347a0d080050162757702317c8d7e06401bb958
  • Pointer size: 132 Bytes
  • Size of remote file: 1.05 MB
data/zelda_rgba.png ADDED
guidance/sd_utils.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPTextModel, CLIPTokenizer, logging
2
+ from diffusers import (
3
+ AutoencoderKL,
4
+ UNet2DConditionModel,
5
+ PNDMScheduler,
6
+ DDIMScheduler,
7
+ StableDiffusionPipeline,
8
+ )
9
+ from diffusers.utils.import_utils import is_xformers_available
10
+
11
+ # suppress partial model loading warning
12
+ logging.set_verbosity_error()
13
+
14
+ import numpy as np
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+
19
+
20
+ def seed_everything(seed):
21
+ torch.manual_seed(seed)
22
+ torch.cuda.manual_seed(seed)
23
+ # torch.backends.cudnn.deterministic = True
24
+ # torch.backends.cudnn.benchmark = True
25
+
26
+
27
+ class StableDiffusion(nn.Module):
28
+ def __init__(
29
+ self,
30
+ device,
31
+ fp16=True,
32
+ vram_O=False,
33
+ sd_version="2.1",
34
+ hf_key=None,
35
+ t_range=[0.02, 0.98],
36
+ ):
37
+ super().__init__()
38
+
39
+ self.device = device
40
+ self.sd_version = sd_version
41
+
42
+ if hf_key is not None:
43
+ print(f"[INFO] using hugging face custom model key: {hf_key}")
44
+ model_key = hf_key
45
+ elif self.sd_version == "2.1":
46
+ model_key = "stabilityai/stable-diffusion-2-1-base"
47
+ elif self.sd_version == "2.0":
48
+ model_key = "stabilityai/stable-diffusion-2-base"
49
+ elif self.sd_version == "1.5":
50
+ model_key = "runwayml/stable-diffusion-v1-5"
51
+ else:
52
+ raise ValueError(
53
+ f"Stable-diffusion version {self.sd_version} not supported."
54
+ )
55
+
56
+ self.dtype = torch.float16 if fp16 else torch.float32
57
+
58
+ # Create model
59
+ pipe = StableDiffusionPipeline.from_pretrained(
60
+ model_key, torch_dtype=self.dtype
61
+ )
62
+
63
+ if vram_O:
64
+ pipe.enable_sequential_cpu_offload()
65
+ pipe.enable_vae_slicing()
66
+ pipe.unet.to(memory_format=torch.channels_last)
67
+ pipe.enable_attention_slicing(1)
68
+ # pipe.enable_model_cpu_offload()
69
+ else:
70
+ pipe.to(device)
71
+
72
+ self.vae = pipe.vae
73
+ self.tokenizer = pipe.tokenizer
74
+ self.text_encoder = pipe.text_encoder
75
+ self.unet = pipe.unet
76
+
77
+ self.scheduler = DDIMScheduler.from_pretrained(
78
+ model_key, subfolder="scheduler", torch_dtype=self.dtype
79
+ )
80
+
81
+ del pipe
82
+
83
+ self.num_train_timesteps = self.scheduler.config.num_train_timesteps
84
+ self.min_step = int(self.num_train_timesteps * t_range[0])
85
+ self.max_step = int(self.num_train_timesteps * t_range[1])
86
+ self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
87
+
88
+ self.embeddings = None
89
+
90
+ @torch.no_grad()
91
+ def get_text_embeds(self, prompts, negative_prompts):
92
+ pos_embeds = self.encode_text(prompts) # [1, 77, 768]
93
+ neg_embeds = self.encode_text(negative_prompts)
94
+ self.embeddings = torch.cat([neg_embeds, pos_embeds], dim=0) # [2, 77, 768]
95
+
96
+ def encode_text(self, prompt):
97
+ # prompt: [str]
98
+ inputs = self.tokenizer(
99
+ prompt,
100
+ padding="max_length",
101
+ max_length=self.tokenizer.model_max_length,
102
+ return_tensors="pt",
103
+ )
104
+ embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
105
+ return embeddings
106
+
107
+ @torch.no_grad()
108
+ def refine(self, pred_rgb,
109
+ guidance_scale=100, steps=50, strength=0.8,
110
+ ):
111
+
112
+ batch_size = pred_rgb.shape[0]
113
+ pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
114
+ latents = self.encode_imgs(pred_rgb_512.to(self.dtype))
115
+ # latents = torch.randn((1, 4, 64, 64), device=self.device, dtype=self.dtype)
116
+
117
+ self.scheduler.set_timesteps(steps)
118
+ init_step = int(steps * strength)
119
+ latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
120
+
121
+ for i, t in enumerate(self.scheduler.timesteps[init_step:]):
122
+
123
+ latent_model_input = torch.cat([latents] * 2)
124
+
125
+ noise_pred = self.unet(
126
+ latent_model_input, t, encoder_hidden_states=self.embeddings,
127
+ ).sample
128
+
129
+ noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
130
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
131
+
132
+ latents = self.scheduler.step(noise_pred, t, latents).prev_sample
133
+
134
+ imgs = self.decode_latents(latents) # [1, 3, 512, 512]
135
+ return imgs
136
+
137
+ def train_step(
138
+ self,
139
+ pred_rgb,
140
+ step_ratio=None,
141
+ guidance_scale=100,
142
+ as_latent=False,
143
+ ):
144
+
145
+ batch_size = pred_rgb.shape[0]
146
+ pred_rgb = pred_rgb.to(self.dtype)
147
+
148
+ if as_latent:
149
+ latents = F.interpolate(pred_rgb, (64, 64), mode="bilinear", align_corners=False) * 2 - 1
150
+ else:
151
+ # interp to 512x512 to be fed into vae.
152
+ pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
153
+ # encode image into latents with vae, requires grad!
154
+ latents = self.encode_imgs(pred_rgb_512)
155
+
156
+ if step_ratio is not None:
157
+ # dreamtime-like
158
+ # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
159
+ t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
160
+ t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
161
+ else:
162
+ t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
163
+
164
+ # w(t), sigma_t^2
165
+ w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
166
+
167
+ # predict the noise residual with unet, NO grad!
168
+ with torch.no_grad():
169
+ # add noise
170
+ noise = torch.randn_like(latents)
171
+ latents_noisy = self.scheduler.add_noise(latents, noise, t)
172
+ # pred noise
173
+ latent_model_input = torch.cat([latents_noisy] * 2)
174
+ tt = torch.cat([t] * 2)
175
+
176
+ noise_pred = self.unet(
177
+ latent_model_input, tt, encoder_hidden_states=self.embeddings.repeat(batch_size, 1, 1)
178
+ ).sample
179
+
180
+ # perform guidance (high scale from paper!)
181
+ noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
182
+ noise_pred = noise_pred_uncond + guidance_scale * (
183
+ noise_pred_pos - noise_pred_uncond
184
+ )
185
+
186
+ grad = w * (noise_pred - noise)
187
+ grad = torch.nan_to_num(grad)
188
+
189
+ # seems important to avoid NaN...
190
+ # grad = grad.clamp(-1, 1)
191
+
192
+ target = (latents - grad).detach()
193
+ loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
194
+
195
+ return loss
196
+
197
+ @torch.no_grad()
198
+ def produce_latents(
199
+ self,
200
+ height=512,
201
+ width=512,
202
+ num_inference_steps=50,
203
+ guidance_scale=7.5,
204
+ latents=None,
205
+ ):
206
+ if latents is None:
207
+ latents = torch.randn(
208
+ (
209
+ self.embeddings.shape[0] // 2,
210
+ self.unet.in_channels,
211
+ height // 8,
212
+ width // 8,
213
+ ),
214
+ device=self.device,
215
+ )
216
+
217
+ self.scheduler.set_timesteps(num_inference_steps)
218
+
219
+ for i, t in enumerate(self.scheduler.timesteps):
220
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
221
+ latent_model_input = torch.cat([latents] * 2)
222
+ # predict the noise residual
223
+ noise_pred = self.unet(
224
+ latent_model_input, t, encoder_hidden_states=self.embeddings
225
+ ).sample
226
+
227
+ # perform guidance
228
+ noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
229
+ noise_pred = noise_pred_uncond + guidance_scale * (
230
+ noise_pred_cond - noise_pred_uncond
231
+ )
232
+
233
+ # compute the previous noisy sample x_t -> x_t-1
234
+ latents = self.scheduler.step(noise_pred, t, latents).prev_sample
235
+
236
+ return latents
237
+
238
+ def decode_latents(self, latents):
239
+ latents = 1 / self.vae.config.scaling_factor * latents
240
+
241
+ imgs = self.vae.decode(latents).sample
242
+ imgs = (imgs / 2 + 0.5).clamp(0, 1)
243
+
244
+ return imgs
245
+
246
+ def encode_imgs(self, imgs):
247
+ # imgs: [B, 3, H, W]
248
+
249
+ imgs = 2 * imgs - 1
250
+
251
+ posterior = self.vae.encode(imgs).latent_dist
252
+ latents = posterior.sample() * self.vae.config.scaling_factor
253
+
254
+ return latents
255
+
256
+ def prompt_to_img(
257
+ self,
258
+ prompts,
259
+ negative_prompts="",
260
+ height=512,
261
+ width=512,
262
+ num_inference_steps=50,
263
+ guidance_scale=7.5,
264
+ latents=None,
265
+ ):
266
+ if isinstance(prompts, str):
267
+ prompts = [prompts]
268
+
269
+ if isinstance(negative_prompts, str):
270
+ negative_prompts = [negative_prompts]
271
+
272
+ # Prompts -> text embeds
273
+ self.get_text_embeds(prompts, negative_prompts)
274
+
275
+ # Text embeds -> img latents
276
+ latents = self.produce_latents(
277
+ height=height,
278
+ width=width,
279
+ latents=latents,
280
+ num_inference_steps=num_inference_steps,
281
+ guidance_scale=guidance_scale,
282
+ ) # [1, 4, 64, 64]
283
+
284
+ # Img latents -> imgs
285
+ imgs = self.decode_latents(latents) # [1, 3, 512, 512]
286
+
287
+ # Img to Numpy
288
+ imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
289
+ imgs = (imgs * 255).round().astype("uint8")
290
+
291
+ return imgs
292
+
293
+
294
+ if __name__ == "__main__":
295
+ import argparse
296
+ import matplotlib.pyplot as plt
297
+
298
+ parser = argparse.ArgumentParser()
299
+ parser.add_argument("prompt", type=str)
300
+ parser.add_argument("--negative", default="", type=str)
301
+ parser.add_argument(
302
+ "--sd_version",
303
+ type=str,
304
+ default="2.1",
305
+ choices=["1.5", "2.0", "2.1"],
306
+ help="stable diffusion version",
307
+ )
308
+ parser.add_argument(
309
+ "--hf_key",
310
+ type=str,
311
+ default=None,
312
+ help="hugging face Stable diffusion model key",
313
+ )
314
+ parser.add_argument("--fp16", action="store_true", help="use float16 for training")
315
+ parser.add_argument(
316
+ "--vram_O", action="store_true", help="optimization for low VRAM usage"
317
+ )
318
+ parser.add_argument("-H", type=int, default=512)
319
+ parser.add_argument("-W", type=int, default=512)
320
+ parser.add_argument("--seed", type=int, default=0)
321
+ parser.add_argument("--steps", type=int, default=50)
322
+ opt = parser.parse_args()
323
+
324
+ seed_everything(opt.seed)
325
+
326
+ device = torch.device("cuda")
327
+
328
+ sd = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key)
329
+
330
+ imgs = sd.prompt_to_img(opt.prompt, opt.negative, opt.H, opt.W, opt.steps)
331
+
332
+ # visualize image
333
+ plt.imshow(imgs[0])
334
+ plt.show()
guidance/zero123_utils.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPTextModel, CLIPTokenizer, logging
2
+ from diffusers import (
3
+ AutoencoderKL,
4
+ UNet2DConditionModel,
5
+ DDIMScheduler,
6
+ StableDiffusionPipeline,
7
+ )
8
+ import torchvision.transforms.functional as TF
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+ import sys
16
+ sys.path.append('./')
17
+
18
+ from zero123 import Zero123Pipeline
19
+
20
+
21
+ class Zero123(nn.Module):
22
+ def __init__(self, device, fp16=True, t_range=[0.02, 0.98]):
23
+ super().__init__()
24
+
25
+ self.device = device
26
+ self.fp16 = fp16
27
+ self.dtype = torch.float16 if fp16 else torch.float32
28
+
29
+ self.pipe = Zero123Pipeline.from_pretrained(
30
+ # "bennyguo/zero123-diffusers",
31
+ "bennyguo/zero123-xl-diffusers",
32
+ # './model_cache/zero123_xl',
33
+ variant="fp16_ema" if self.fp16 else None,
34
+ torch_dtype=self.dtype,
35
+ ).to(self.device)
36
+
37
+ # for param in self.pipe.parameters():
38
+ # param.requires_grad = False
39
+
40
+ self.pipe.image_encoder.eval()
41
+ self.pipe.vae.eval()
42
+ self.pipe.unet.eval()
43
+ self.pipe.clip_camera_projection.eval()
44
+
45
+ self.vae = self.pipe.vae
46
+ self.unet = self.pipe.unet
47
+
48
+ self.pipe.set_progress_bar_config(disable=True)
49
+
50
+ self.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
51
+ self.num_train_timesteps = self.scheduler.config.num_train_timesteps
52
+
53
+ self.min_step = int(self.num_train_timesteps * t_range[0])
54
+ self.max_step = int(self.num_train_timesteps * t_range[1])
55
+ self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
56
+
57
+ self.embeddings = None
58
+
59
+ @torch.no_grad()
60
+ def get_img_embeds(self, x):
61
+ # x: image tensor in [0, 1]
62
+ x = F.interpolate(x, (256, 256), mode='bilinear', align_corners=False)
63
+ x_pil = [TF.to_pil_image(image) for image in x]
64
+ x_clip = self.pipe.feature_extractor(images=x_pil, return_tensors="pt").pixel_values.to(device=self.device, dtype=self.dtype)
65
+ c = self.pipe.image_encoder(x_clip).image_embeds
66
+ v = self.encode_imgs(x.to(self.dtype)) / self.vae.config.scaling_factor
67
+ self.embeddings = [c, v]
68
+
69
+ @torch.no_grad()
70
+ def refine(self, pred_rgb, polar, azimuth, radius,
71
+ guidance_scale=5, steps=50, strength=0.8,
72
+ ):
73
+
74
+ batch_size = pred_rgb.shape[0]
75
+
76
+ self.scheduler.set_timesteps(steps)
77
+
78
+ if strength == 0:
79
+ init_step = 0
80
+ latents = torch.randn((1, 4, 32, 32), device=self.device, dtype=self.dtype)
81
+ else:
82
+ init_step = int(steps * strength)
83
+ pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
84
+ latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
85
+ latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
86
+
87
+ T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
88
+ T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
89
+ cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
90
+ cc_emb = self.pipe.clip_camera_projection(cc_emb)
91
+ cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
92
+
93
+ vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
94
+ vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
95
+
96
+ for i, t in enumerate(self.scheduler.timesteps[init_step:]):
97
+
98
+ x_in = torch.cat([latents] * 2)
99
+ t_in = torch.cat([t.view(1)] * 2).to(self.device)
100
+
101
+ noise_pred = self.unet(
102
+ torch.cat([x_in, vae_emb], dim=1),
103
+ t_in.to(self.unet.dtype),
104
+ encoder_hidden_states=cc_emb,
105
+ ).sample
106
+
107
+ noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
108
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
109
+
110
+ latents = self.scheduler.step(noise_pred, t, latents).prev_sample
111
+
112
+ imgs = self.decode_latents(latents) # [1, 3, 256, 256]
113
+ return imgs
114
+
115
+ def train_step(self, pred_rgb, polar, azimuth, radius, step_ratio=None, guidance_scale=5, as_latent=False):
116
+ # pred_rgb: tensor [1, 3, H, W] in [0, 1]
117
+
118
+ batch_size = pred_rgb.shape[0]
119
+
120
+ if as_latent:
121
+ latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
122
+ else:
123
+ pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
124
+ latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
125
+
126
+ if step_ratio is not None:
127
+ # dreamtime-like
128
+ # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
129
+ t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
130
+ t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
131
+ else:
132
+ t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
133
+
134
+ w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
135
+
136
+ with torch.no_grad():
137
+ noise = torch.randn_like(latents)
138
+ latents_noisy = self.scheduler.add_noise(latents, noise, t)
139
+
140
+ x_in = torch.cat([latents_noisy] * 2)
141
+ t_in = torch.cat([t] * 2)
142
+
143
+ T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
144
+ T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
145
+ cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
146
+ cc_emb = self.pipe.clip_camera_projection(cc_emb)
147
+ cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
148
+
149
+ vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
150
+ vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
151
+
152
+ noise_pred = self.unet(
153
+ torch.cat([x_in, vae_emb], dim=1),
154
+ t_in.to(self.unet.dtype),
155
+ encoder_hidden_states=cc_emb,
156
+ ).sample
157
+
158
+ noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
159
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
160
+
161
+ grad = w * (noise_pred - noise)
162
+ grad = torch.nan_to_num(grad)
163
+
164
+ target = (latents - grad).detach()
165
+ loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')
166
+
167
+ return loss
168
+
169
+
170
+ def decode_latents(self, latents):
171
+ latents = 1 / self.vae.config.scaling_factor * latents
172
+
173
+ imgs = self.vae.decode(latents).sample
174
+ imgs = (imgs / 2 + 0.5).clamp(0, 1)
175
+
176
+ return imgs
177
+
178
+ def encode_imgs(self, imgs, mode=False):
179
+ # imgs: [B, 3, H, W]
180
+
181
+ imgs = 2 * imgs - 1
182
+
183
+ posterior = self.vae.encode(imgs).latent_dist
184
+ if mode:
185
+ latents = posterior.mode()
186
+ else:
187
+ latents = posterior.sample()
188
+ latents = latents * self.vae.config.scaling_factor
189
+
190
+ return latents
191
+
192
+
193
+ if __name__ == '__main__':
194
+ import cv2
195
+ import argparse
196
+ import numpy as np
197
+ import matplotlib.pyplot as plt
198
+
199
+ parser = argparse.ArgumentParser()
200
+
201
+ parser.add_argument('input', type=str)
202
+ parser.add_argument('--polar', type=float, default=0, help='delta polar angle in [-90, 90]')
203
+ parser.add_argument('--azimuth', type=float, default=0, help='delta azimuth angle in [-180, 180]')
204
+ parser.add_argument('--radius', type=float, default=0, help='delta camera radius multiplier in [-0.5, 0.5]')
205
+
206
+ opt = parser.parse_args()
207
+
208
+ device = torch.device('cuda')
209
+
210
+ print(f'[INFO] loading image from {opt.input} ...')
211
+ image = cv2.imread(opt.input, cv2.IMREAD_UNCHANGED)
212
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
213
+ image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA)
214
+ image = image.astype(np.float32) / 255.0
215
+ image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).contiguous().to(device)
216
+
217
+ print(f'[INFO] loading model ...')
218
+ zero123 = Zero123(device)
219
+
220
+ print(f'[INFO] running model ...')
221
+ zero123.get_img_embeds(image)
222
+
223
+ while True:
224
+ outputs = zero123.refine(image, polar=[opt.polar], azimuth=[opt.azimuth], radius=[opt.radius], strength=0)
225
+ plt.imshow(outputs.float().cpu().numpy().transpose(0, 2, 3, 1)[0])
226
+ plt.show()
scripts/convert_obj_to_video.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+
5
+ parser = argparse.ArgumentParser()
6
+ parser.add_argument('--dir', default='logs', type=str, help='Directory where obj files are stored')
7
+ parser.add_argument('--out', default='videos', type=str, help='Directory where videos will be saved')
8
+ args = parser.parse_args()
9
+
10
+ out = args.out
11
+ os.makedirs(out, exist_ok=True)
12
+
13
+ files = glob.glob(f'{args.dir}/*.obj')
14
+ for f in files:
15
+ name = os.path.basename(f)
16
+ # first stage model, ignore
17
+ if name.endswith('_mesh.obj'):
18
+ continue
19
+ print(f'[INFO] process {name}')
20
+ os.system(f"python -m kiui.render {f} --save_video {os.path.join(out, name.replace('.obj', '.mp4'))} ")
scripts/run.sh ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ export CUDA_VISIBLE_DEVICES=5
2
+
3
+ python main.py --config configs/image.yaml input=data/anya_rgba.png save_path=anya
4
+ python main2.py --config configs/image.yaml input=data/anya_rgba.png save_path=anya
5
+ python -m kiui.render logs/anya.obj --save_video videos/anya.mp4 --wogui
scripts/run_sd.sh ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export CUDA_VISIBLE_DEVICES=6
2
+
3
+ # easy samples
4
+ python main.py --config configs/text.yaml prompt="a photo of an icecream" save_path=icecream
5
+ python main2.py --config configs/text.yaml prompt="a photo of an icecream" save_path=icecream
6
+ python main.py --config configs/text.yaml prompt="a ripe strawberry" save_path=strawberry
7
+ python main2.py --config configs/text.yaml prompt="a ripe strawberry" save_path=strawberry
8
+ python main.py --config configs/text.yaml prompt="a blue tulip" save_path=tulip
9
+ python main2.py --config configs/text.yaml prompt="a blue tulip" save_path=tulip
10
+
11
+ python main.py --config configs/text.yaml prompt="a golden goblet" save_path=goblet
12
+ python main2.py --config configs/text.yaml prompt="a golden goblet" save_path=goblet
13
+ python main.py --config configs/text.yaml prompt="a photo of a hamburger" save_path=hamburger
14
+ python main2.py --config configs/text.yaml prompt="a photo of a hamburger" save_path=hamburger
15
+ python main.py --config configs/text.yaml prompt="a delicious croissant" save_path=croissant
16
+ python main2.py --config configs/text.yaml prompt="a delicious croissant" save_path=croissant
17
+
18
+ # hard samples
19
+ python main.py --config configs/text.yaml prompt="a baby bunny sitting on top of a stack of pancake" save_path=bunny_pancake
20
+ python main2.py --config configs/text.yaml prompt="a baby bunny sitting on top of a stack of pancake" save_path=bunny_pancake
21
+ python main.py --config configs/text.yaml prompt="a typewriter" save_path=typewriter
22
+ python main2.py --config configs/text.yaml prompt="a typewriter" save_path=typewriter
23
+ python main.py --config configs/text.yaml prompt="a pineapple" save_path=pineapple
24
+ python main2.py --config configs/text.yaml prompt="a pineapple" save_path=pineapple
25
+
26
+ python main.py --config configs/text.yaml prompt="a model of a house in Tudor style" save_path=tudor_house
27
+ python main2.py --config configs/text.yaml prompt="a model of a house in Tudor style" save_path=tudor_house
28
+ python main.py --config configs/text.yaml prompt="a lionfish" save_path=lionfish
29
+ python main2.py --config configs/text.yaml prompt="a lionfish" save_path=lionfish
30
+ python main.py --config configs/text.yaml prompt="a bunch of yellow rose, highly detailed" save_path=rose
31
+ python main2.py --config configs/text.yaml prompt="a bunch of yellow rose, highly detailed" save_path=rose
scripts/runall.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+
5
+ parser = argparse.ArgumentParser()
6
+ parser.add_argument('--dir', default='data', type=str, help='Directory where processed images are stored')
7
+ parser.add_argument('--out', default='logs', type=str, help='Directory where obj files will be saved')
8
+ parser.add_argument('--video-out', default='videos', type=str, help='Directory where videos will be saved')
9
+ parser.add_argument('--gpu', default=0, type=int, help='ID of GPU to use')
10
+ parser.add_argument('--elevation', default=0, type=int, help='Elevation angle of view in degrees')
11
+ parser.add_argument('--config', default='configs', type=str, help='Path to config directory, which contains image.yaml')
12
+ args = parser.parse_args()
13
+
14
+ files = glob.glob(f'{args.dir}/*_rgba.png')
15
+ configs_dir = args.config
16
+
17
+ # check if image.yaml exists
18
+ if not os.path.exists(os.path.join(configs_dir, 'image.yaml')):
19
+ raise FileNotFoundError(
20
+ f'image.yaml not found in {configs_dir} directory. Please check if the directory is correct.'
21
+ )
22
+
23
+ # create output directories if not exists
24
+ out_dir = args.out
25
+ os.makedirs(out_dir, exist_ok=True)
26
+ video_dir = args.video_out
27
+ os.makedirs(video_dir, exist_ok=True)
28
+
29
+
30
+ for file in files:
31
+ name = os.path.basename(file).replace("_rgba.png", "")
32
+ print(f'======== processing {name} ========')
33
+ # first stage
34
+ os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main.py '
35
+ f'--config {configs_dir}/image.yaml '
36
+ f'input={file} '
37
+ f'save_path={name} elevation={args.elevation}')
38
+ # second stage
39
+ os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main2.py '
40
+ f'--config {configs_dir}/image.yaml '
41
+ f'input={file} '
42
+ f'save_path={name} elevation={args.elevation}')
43
+ # export video
44
+ mesh_path = os.path.join(out_dir, f'{name}.obj')
45
+ os.system(f'python -m kiui.render {mesh_path} '
46
+ f'--save_video {video_dir}/{name}.mp4 '
47
+ f'--wogui '
48
+ f'--elevation {args.elevation}')
scripts/runall_sd.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+
5
+ parser = argparse.ArgumentParser()
6
+ parser.add_argument('--gpu', default=0, type=int)
7
+ args = parser.parse_args()
8
+
9
+ prompts = [
10
+ ('strawberry', 'a ripe strawberry'),
11
+ ('cactus_pot', 'a small saguaro cactus planted in a clay pot'),
12
+ ('hamburger', 'a delicious hamburger'),
13
+ ('icecream', 'an icecream'),
14
+ ('tulip', 'a blue tulip'),
15
+ ('pineapple', 'a ripe pineapple'),
16
+ ('goblet', 'a golden goblet'),
17
+ # ('squitopus', 'a squirrel-octopus hybrid'),
18
+ # ('astronaut', 'Michelangelo style statue of an astronaut'),
19
+ # ('teddy_bear', 'a teddy bear'),
20
+ # ('corgi_nurse', 'a plush toy of a corgi nurse'),
21
+ # ('teapot', 'a blue and white porcelain teapot'),
22
+ # ('skull', "a human skull"),
23
+ # ('penguin', 'a penguin'),
24
+ # ('campfire', 'a campfire'),
25
+ # ('donut', 'a donut with pink icing'),
26
+ # ('cupcake', 'a birthday cupcake'),
27
+ # ('pie', 'shepherds pie'),
28
+ # ('cone', 'a traffic cone'),
29
+ # ('schoolbus', 'a schoolbus'),
30
+ # ('avocado_chair', 'a chair that looks like an avocado'),
31
+ # ('glasses', 'a pair of sunglasses')
32
+ # ('potion', 'a bottle of green potion'),
33
+ # ('chalice', 'a delicate chalice'),
34
+ ]
35
+
36
+ for name, prompt in prompts:
37
+ print(f'======== processing {name} ========')
38
+ # first stage
39
+ os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main.py --config configs/text.yaml prompt="{prompt}" save_path={name}')
40
+ # second stage
41
+ os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main2.py --config configs/text.yaml prompt="{prompt}" save_path={name}')
42
+ # export video
43
+ mesh_path = os.path.join('logs', f'{name}.obj')
44
+ os.makedirs('videos', exist_ok=True)
45
+ os.system(f'python -m kiui.render {mesh_path} --save_video videos/{name}.mp4 --wogui')