File size: 6,073 Bytes
9d85ee2
e676bd8
9d85ee2
8a02493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d85ee2
 
 
8a02493
e676bd8
8a02493
e676bd8
 
8a02493
 
e676bd8
 
 
 
 
 
8a02493
 
 
 
 
e676bd8
74e4942
8a02493
 
 
 
 
e676bd8
8a02493
 
e676bd8
 
8a02493
e676bd8
8a02493
 
 
 
e676bd8
 
 
 
 
 
 
 
 
8a02493
 
 
 
e676bd8
 
 
9d85ee2
8a02493
e676bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a02493
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from functools import partial

import numpy as np
import unicodedata
import diff_match_patch as dmp_module
from enum import Enum
import gradio as gr
from datasets import load_dataset
import pandas as pd
from jiwer import process_words, wer_default


class Action(Enum):
    INSERTION = 1
    DELETION = -1
    EQUAL = 0


def compare_string(text1: str, text2: str) -> list:
    text1_normalized = unicodedata.normalize("NFKC", text1)
    text2_normalized = unicodedata.normalize("NFKC", text2)

    dmp = dmp_module.diff_match_patch()
    diff = dmp.diff_main(text1_normalized, text2_normalized)
    dmp.diff_cleanupSemantic(diff)

    return diff


def style_text(diff):
    fullText = ""
    for action, text in diff:
        if action == Action.INSERTION.value:
            fullText += f"<span style='background-color:Lightgreen'>{text}</span>"
        elif action == Action.DELETION.value:
            fullText += f"<span style='background-color:#FFCCCB'><s>{text}</s></span>"
        elif action == Action.EQUAL.value:
            fullText += f"{text}"
        else:
            raise Exception("Not Implemented")
    fullText = fullText.replace("](", "]\(").replace("~", "\~")
    return fullText


dataset = load_dataset(
    "distil-whisper/tedlium-long-form", split="validation", num_proc=os.cpu_count()
)

csv_v2 = pd.read_csv("assets/large-v2.csv")

norm_target = csv_v2["Norm Target"]
norm_pred_v2 = csv_v2["Norm Pred"]

norm_target = [norm_target[i] for i in range(len(norm_target))]
norm_pred_v2 = [norm_pred_v2[i] for i in range(len(norm_pred_v2))]

csv_v2 = pd.read_csv("assets/large-32-2.csv")

norm_pred_32_2 = csv_v2["Norm Pred"]
norm_pred_32_2 = [norm_pred_32_2[i] for i in range(len(norm_pred_32_2))]

target_dtype = np.int16
max_range = np.iinfo(target_dtype).max


def get_visualisation(idx, model="v2"):
    idx -= 1
    audio = dataset[idx]["audio"]
    array = (audio["array"] * max_range).astype(np.int16)
    sampling_rate = audio["sampling_rate"]

    text1 = norm_target[idx]
    text2 = norm_pred_v2[idx] if model == "v2" else norm_pred_32_2[idx]

    wer_output = process_words(text1, text2, wer_default, wer_default)
    wer_percentage = round(100 * wer_output.wer, 2)
    ier_percentage = round(100 *  wer_output.insertions / len(wer_output.references[0]), 2)

    rel_length = round(len(text2.split()) / len(text1.split()), 2)

    diff = compare_string(text1, text2)
    full_text = style_text(diff)

    return (sampling_rate, array), wer_percentage, ier_percentage, rel_length, full_text

def get_side_by_side_visualisation(idx):
    large_v2 = get_visualisation(idx, model="v2")
    large_32_2 = get_visualisation(idx, model="32-2")
    table = [large_v2[1:-1], large_32_2[1:-1]]
    table[0] = ["large-v2", *table[0]]
    table[1] = ["large-32-2", *table[1]]
    return large_v2[0], table, large_v2[-1], large_32_2[-1]


if __name__ == "__main__":
    with gr.Blocks() as demo:
        with gr.Tab("large-v2"):
            gr.Markdown(
                "Analyse the transcriptions generated by the Whisper large-v2 model on the TEDLIUM dev set."
            )

            slider = gr.Slider(
                minimum=1, maximum=len(norm_target), step=1, label="Dataset sample"
            )
            btn = gr.Button("Analyse")
            audio_out = gr.Audio(label="Audio input")
            with gr.Row():
                wer = gr.Number(label="Word Error Rate (WER)")
                ier = gr.Number(
                    label="Insertion Error Rate (IER)"
                )
                relative_length = gr.Number(
                    label="Relative length (reference length / target length)"
                )
            text_out = gr.Markdown(label="Text difference")

            btn.click(
                fn=partial(get_visualisation, model="v2"),
                inputs=slider,
                outputs=[audio_out, wer, ier, relative_length, text_out],
            )
        with gr.Tab("large-32-2"):
            gr.Markdown(
                "Analyse the transcriptions generated by the Whisper large-32-2 model on the TEDLIUM dev set."
            )
            slider = gr.Slider(
                minimum=1, maximum=len(norm_target), step=1, label="Dataset sample"
            )
            btn = gr.Button("Analyse")
            audio_out = gr.Audio(label="Audio input")
            with gr.Row():
                wer = gr.Number(label="Word Error Rate (WER)")
                ier = gr.Number(
                    label="Insertion Error Rate (IER)"
                )
                relative_length = gr.Number(
                    label="Relative length (reference length / target length)"
                )
            text_out = gr.Markdown(label="Text difference")

            btn.click(
                fn=partial(get_visualisation, model="32-2"),
                inputs=slider,
                outputs=[audio_out, wer, ier, relative_length, text_out],
            )
        with gr.Tab("side-by-side"):
            gr.Markdown(
                "Analyse the transcriptions generated by the Whisper large-32-2 model on the TEDLIUM dev set."
            )
            slider = gr.Slider(
                minimum=1, maximum=len(norm_target), step=1, label="Dataset sample"
            )
            btn = gr.Button("Analyse")
            audio_out = gr.Audio(label="Audio input")
            with gr.Column():
                table = gr.Dataframe(headers=["Model", "Word Error Rate (WER)", "Insertion Error Rate (IER)", "Rel length (ref length / tgt length)"], height=1000)
                with gr.Row():
                    gr.Markdown("large-v2 text diff")
                    gr.Markdown("large-32-2 text diff")
                with gr.Row():
                    text_out_v2 = gr.Markdown(label="Text difference")
                    text_out_32_2 = gr.Markdown(label="Text difference")

            btn.click(
                fn=get_side_by_side_visualisation,
                inputs=slider,
                outputs=[audio_out, table, text_out_v2, text_out_32_2],
            )
    demo.launch()