Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import random | |
from auth import check_password | |
if not check_password(): | |
st.stop() | |
st.set_page_config( | |
page_title="ARL - Pilot 2a", | |
page_icon="π", | |
layout="wide", | |
) | |
df = pd.read_csv('./results.csv') | |
print(df.columns) | |
query = st.experimental_get_query_params() | |
if not query or 'id4' not in query or not query['id4']: | |
rnd_ind = random.randint(0, len(df) - 1) | |
# id = rnd_ind | |
id = 0 | |
st.experimental_set_query_params(id=id) | |
file_id = id | |
else: | |
file_id = int(query['id4'][0]) | |
st.experimental_set_query_params(id4=file_id) | |
data = df.iloc[file_id] | |
# st.table(data) | |
# print(data) | |
def show_story(): | |
st.subheader('Impacted Story') | |
number_of_story_lines = int(data['Input.number_of_lines']) | |
print(number_of_story_lines) | |
story = data['Input.story'].split('. ') | |
for i in range(number_of_story_lines): | |
row_name = f'Answer.line{i}_changed.on' | |
print(row_name, data[row_name]) | |
if data[row_name]: | |
st.markdown(f'**Line {i+1}:** <mark style="background-color: white">{story[i]}</mark>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'**Line {i+1}:** {story[i]}') | |
def show_data(): | |
col1, col2 = st.columns(2) | |
with col1: | |
img1, img2, img3 = st.columns(3) | |
with img1: | |
st.image(data['Input.image1']) | |
with img2: | |
st.image(data['Input.image2']) | |
with img3: | |
st.image(data['Input.image3']) | |
st.subheader('Entity') | |
st.write(data['Input.entity']) | |
st.subheader('Agent') | |
st.write(data['Input.agent']) | |
# st.subheader('Input Goal') | |
# st.write(data['Input.goal']) | |
st.subheader('Story') | |
st.write(data['Input.story']) | |
with col2: | |
if data['Answer.agent_makes_no_sense.on']: | |
st.subheader('Agent Makes No Sense') | |
st.write("Proposed Agent: " + data['Answer.agent_makes_no_sense_text']) | |
else: | |
st.subheader('Goal') | |
st.write(data['Answer.goal']) | |
st.subheader('Condition Necessary') | |
st.write(data['Answer.condition']) | |
st.subheader('Altered Condition') | |
st.write(data['Answer.not_condition']) | |
st.subheader('Lead to Altered Condition') | |
st.write(data['Answer.not_condition_ep']) | |
if data['Answer.story_impact.yes']: | |
show_story() | |
else: | |
st.subheader('Why no impact?') | |
st.text(data['Answer.why_no_impact']) | |
print(data) | |
from api import show_likert_scale | |
done = show_likert_scale('step_all', 'Whole', data['AssignmentId']) | |
if st.button("Next", disabled=not done): | |
id = file_id + 1 | |
st.experimental_set_query_params(id4=id) | |
st.experimental_rerun() | |
show_data() | |