dioarafl commited on
Commit
8a4b9ae
·
verified ·
1 Parent(s): 40dc069

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import edge_tts
4
+ import tempfile
5
+ import numpy as np
6
+ from torchvision.models.detection import fasterrcnn_resnet50_fpn
7
+ import torchvision.transforms as transforms
8
+ from PIL import Image
9
+ from huggingface_hub import InferenceClient
10
+
11
+ class YoloDetector:
12
+ def __init__(self, weights_path, cfg_path, names_path):
13
+ self.net = cv2.dnn.readNet(weights_path, cfg_path)
14
+ self.classes = []
15
+ with open(names_path, "r") as f:
16
+ self.classes = [line.strip() for line in f.readlines()]
17
+ self.layer_names = self.net.getLayerNames()
18
+ self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
19
+
20
+ def detect_objects(self, frame):
21
+ height, width, channels = frame.shape
22
+ blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
23
+ self.net.setInput(blob)
24
+ outs = self.net.forward(self.output_layers)
25
+
26
+ class_ids = []
27
+ confidences = []
28
+ boxes = []
29
+ for out in outs:
30
+ for detection in out:
31
+ scores = detection[5:]
32
+ class_id = np.argmax(scores)
33
+ confidence = scores[class_id]
34
+ if confidence > 0.5:
35
+ center_x = int(detection[0] * width)
36
+ center_y = int(detection[1] * height)
37
+ w = int(detection[2] * width)
38
+ h = int(detection[3] * height)
39
+ x = int(center_x - w / 2)
40
+ y = int(center_y - h / 2)
41
+ boxes.append([x, y, w, h])
42
+ confidences.append(float(confidence))
43
+ class_ids.append(class_id)
44
+
45
+ indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
46
+ font = cv2.FONT_HERSHEY_PLAIN
47
+ for i in range(len(boxes)):
48
+ if i in indexes:
49
+ x, y, w, h = boxes[i]
50
+ label = str(self.classes[class_ids[i]])
51
+ color = (0, 255, 0)
52
+ cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
53
+ cv2.putText(frame, label, (x, y + 30), font, 3, color, 2)
54
+
55
+ return frame
56
+
57
+ class JarvisModels:
58
+ def __init__(self):
59
+ self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
60
+ self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names")
61
+
62
+ async def generate_model1(self, prompt):
63
+ generate_kwargs = dict(
64
+ temperature=0.6,
65
+ max_new_tokens=256,
66
+ top_p=0.95,
67
+ repetition_penalty=1,
68
+ do_sample=True,
69
+ seed=42,
70
+ )
71
+ formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
72
+ stream = self.client1.text_generation(
73
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
74
+ output = ""
75
+ for response in stream:
76
+ output += response.token.text
77
+
78
+ communicate = edge_tts.Communicate(output)
79
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
80
+ tmp_path = tmp_file.name
81
+ communicate.save(tmp_path)
82
+ return tmp_path
83
+
84
+ class FasterRCNNDetector:
85
+ def __init__(self):
86
+ self.model = fasterrcnn_resnet50_fpn(pretrained=True)
87
+ self.model.eval()
88
+ self.classes = [
89
+ "__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus",
90
+ "train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign",
91
+ "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
92
+ "elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A",
93
+ "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
94
+ "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket",
95
+ "bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
96
+ "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",
97
+ "donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table",
98
+ "N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
99
+ "microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book",
100
+ "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
101
+ ]
102
+
103
+ def detect_objects(self, image):
104
+ image_pil = Image.fromarray(image)
105
+ transform = transforms.Compose([transforms.ToTensor()])
106
+ image_tensor = transform(image_pil).unsqueeze(0)
107
+
108
+ with torch.no_grad():
109
+ prediction = self.model(image_tensor)
110
+
111
+ boxes = prediction[0]['boxes']
112
+ labels = prediction[0]['labels']
113
+ scores = prediction[0]['scores']
114
+
115
+ for box, label, score in zip(boxes, labels, scores):
116
+ box = [int(i) for i in box]
117
+ cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
118
+ cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2)
119
+
120
+ return image
121
+
122
+ def generate_response(frame):
123
+ jarvis = JarvisModels()
124
+ detector = FasterRCNNDetector()
125
+ frame_with_boxes = jarvis.detector.detect_objects(frame)
126
+ cv2.imwrite("temp.jpg", frame_with_boxes)
127
+ communicate = edge_tts.Communicate("Objects detected!")
128
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
129
+ tmp_path = tmp_file.name
130
+ communicate.save(tmp_path)
131
+ return tmp_path
132
+
133
+ iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False)
134
+ gr.Interface(fn=iface, layout="vertical", capture_session=True).launch()