Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
import edge_tts
|
4 |
+
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from PIL import Image
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
|
11 |
+
class YoloDetector:
|
12 |
+
def __init__(self, weights_path, cfg_path, names_path):
|
13 |
+
self.net = cv2.dnn.readNet(weights_path, cfg_path)
|
14 |
+
self.classes = []
|
15 |
+
with open(names_path, "r") as f:
|
16 |
+
self.classes = [line.strip() for line in f.readlines()]
|
17 |
+
self.layer_names = self.net.getLayerNames()
|
18 |
+
self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
|
19 |
+
|
20 |
+
def detect_objects(self, frame):
|
21 |
+
height, width, channels = frame.shape
|
22 |
+
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
|
23 |
+
self.net.setInput(blob)
|
24 |
+
outs = self.net.forward(self.output_layers)
|
25 |
+
|
26 |
+
class_ids = []
|
27 |
+
confidences = []
|
28 |
+
boxes = []
|
29 |
+
for out in outs:
|
30 |
+
for detection in out:
|
31 |
+
scores = detection[5:]
|
32 |
+
class_id = np.argmax(scores)
|
33 |
+
confidence = scores[class_id]
|
34 |
+
if confidence > 0.5:
|
35 |
+
center_x = int(detection[0] * width)
|
36 |
+
center_y = int(detection[1] * height)
|
37 |
+
w = int(detection[2] * width)
|
38 |
+
h = int(detection[3] * height)
|
39 |
+
x = int(center_x - w / 2)
|
40 |
+
y = int(center_y - h / 2)
|
41 |
+
boxes.append([x, y, w, h])
|
42 |
+
confidences.append(float(confidence))
|
43 |
+
class_ids.append(class_id)
|
44 |
+
|
45 |
+
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
46 |
+
font = cv2.FONT_HERSHEY_PLAIN
|
47 |
+
for i in range(len(boxes)):
|
48 |
+
if i in indexes:
|
49 |
+
x, y, w, h = boxes[i]
|
50 |
+
label = str(self.classes[class_ids[i]])
|
51 |
+
color = (0, 255, 0)
|
52 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
|
53 |
+
cv2.putText(frame, label, (x, y + 30), font, 3, color, 2)
|
54 |
+
|
55 |
+
return frame
|
56 |
+
|
57 |
+
class JarvisModels:
|
58 |
+
def __init__(self):
|
59 |
+
self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
60 |
+
self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names")
|
61 |
+
|
62 |
+
async def generate_model1(self, prompt):
|
63 |
+
generate_kwargs = dict(
|
64 |
+
temperature=0.6,
|
65 |
+
max_new_tokens=256,
|
66 |
+
top_p=0.95,
|
67 |
+
repetition_penalty=1,
|
68 |
+
do_sample=True,
|
69 |
+
seed=42,
|
70 |
+
)
|
71 |
+
formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
|
72 |
+
stream = self.client1.text_generation(
|
73 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
74 |
+
output = ""
|
75 |
+
for response in stream:
|
76 |
+
output += response.token.text
|
77 |
+
|
78 |
+
communicate = edge_tts.Communicate(output)
|
79 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
80 |
+
tmp_path = tmp_file.name
|
81 |
+
communicate.save(tmp_path)
|
82 |
+
return tmp_path
|
83 |
+
|
84 |
+
class FasterRCNNDetector:
|
85 |
+
def __init__(self):
|
86 |
+
self.model = fasterrcnn_resnet50_fpn(pretrained=True)
|
87 |
+
self.model.eval()
|
88 |
+
self.classes = [
|
89 |
+
"__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus",
|
90 |
+
"train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign",
|
91 |
+
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
|
92 |
+
"elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A",
|
93 |
+
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
|
94 |
+
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket",
|
95 |
+
"bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
|
96 |
+
"banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",
|
97 |
+
"donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table",
|
98 |
+
"N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
|
99 |
+
"microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book",
|
100 |
+
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
|
101 |
+
]
|
102 |
+
|
103 |
+
def detect_objects(self, image):
|
104 |
+
image_pil = Image.fromarray(image)
|
105 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
106 |
+
image_tensor = transform(image_pil).unsqueeze(0)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
prediction = self.model(image_tensor)
|
110 |
+
|
111 |
+
boxes = prediction[0]['boxes']
|
112 |
+
labels = prediction[0]['labels']
|
113 |
+
scores = prediction[0]['scores']
|
114 |
+
|
115 |
+
for box, label, score in zip(boxes, labels, scores):
|
116 |
+
box = [int(i) for i in box]
|
117 |
+
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
118 |
+
cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2)
|
119 |
+
|
120 |
+
return image
|
121 |
+
|
122 |
+
def generate_response(frame):
|
123 |
+
jarvis = JarvisModels()
|
124 |
+
detector = FasterRCNNDetector()
|
125 |
+
frame_with_boxes = jarvis.detector.detect_objects(frame)
|
126 |
+
cv2.imwrite("temp.jpg", frame_with_boxes)
|
127 |
+
communicate = edge_tts.Communicate("Objects detected!")
|
128 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
129 |
+
tmp_path = tmp_file.name
|
130 |
+
communicate.save(tmp_path)
|
131 |
+
return tmp_path
|
132 |
+
|
133 |
+
iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False)
|
134 |
+
gr.Interface(fn=iface, layout="vertical", capture_session=True).launch()
|