File size: 4,984 Bytes
a151662
 
3f50d8b
4beb7b0
 
 
fe8dc94
d020550
 
4beb7b0
cea66bb
d020550
4beb7b0
67cd4b7
 
 
 
 
 
 
4beb7b0
 
d020550
 
4beb7b0
 
 
 
 
 
 
 
3f50d8b
4beb7b0
3f50d8b
 
4beb7b0
 
c92562c
3f50d8b
b2ba730
3f50d8b
 
 
 
 
 
 
 
 
 
 
 
b2ba730
 
fe8dc94
 
 
 
4beb7b0
3f50d8b
67cd4b7
 
 
 
 
 
3f50d8b
 
 
67cd4b7
 
 
3f50d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67cd4b7
4beb7b0
67cd4b7
 
 
3f50d8b
67cd4b7
4beb7b0
 
67cd4b7
 
 
 
3f50d8b
 
 
 
 
 
 
 
 
 
 
67cd4b7
3f50d8b
 
 
 
 
 
 
67cd4b7
 
 
 
 
 
 
3f50d8b
22aa66a
 
 
67cd4b7
 
 
 
22aa66a
 
 
 
 
 
 
67cd4b7
 
 
 
 
 
22aa66a
 
 
d020550
4beb7b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import FileResponse
from datasets import load_dataset
from fastapi.middleware.cors import CORSMiddleware
# Loading
import os
import shutil
from os import makedirs,getcwd
from os.path import join,exists,dirname
import torch

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

NUM_PROC = os.cpu_count()
parent_path  = dirname(getcwd())

temp_path  = join(parent_path,'temp')
if not exists(temp_path ):
    makedirs(temp_path )

# Determine device based on GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

import logging

logging.basicConfig(format="%(levelname)s - %(name)s -  %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)

@app.post("/uploadfile/")
async def create_upload_file(text_field: str, file: UploadFile = File(...)):
    # Imports
    import time
    from haystack import Document, Pipeline
    from haystack.components.writers import DocumentWriter
    from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
    from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
    from haystack.document_stores.types import DuplicatePolicy
    from haystack_integrations.components.embedders.fastembed import (
     FastembedTextEmbedder,
     FastembedDocumentEmbedder,
     FastembedSparseTextEmbedder,
     FastembedSparseDocumentEmbedder
    )
    
    start_time = time.time()
    
    file_savePath =  join(temp_path,file.filename)

    with open(file_savePath,'wb') as f:
        shutil.copyfileobj(file.file, f)
    
    documents=[]
    
    # Here you can save the file and do other operations as needed
    if '.json' in file_savePath:
        with open(file_savePath) as fd:
            for line in fd:
                obj = json.loads(line)
                document = Document(content=obj[text_field], meta=obj) 
                documents.append(document)
    
    else:
        raise NotImplementedError("This feature is not supported yet")

    # Indexing
    
    document_store = QdrantDocumentStore(
        path="database",
        recreate_index=True,
        use_sparse_embeddings=True,
        embedding_dim = 384
    )
    
    indexing = Pipeline()
    indexing.add_component("sparse_doc_embedder", FastembedSparseDocumentEmbedder(model="prithvida/Splade_PP_en_v1"))
    indexing.add_component("dense_doc_embedder", FastembedDocumentEmbedder(model="BAAI/bge-small-en-v1.5"))
    indexing.add_component("writer", DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
    indexing.connect("sparse_doc_embedder", "dense_doc_embedder")
    indexing.connect("dense_doc_embedder", "writer")
    
    indexing.run({"sparse_doc_embedder": {"documents": documents}})
    end_time = time.time()

    elapsed_time = end_time - start_time
    
    return {"filename": file.filename, "message": "Done", "execution_time": elapsed_time}

    
@app.get("/search")
def search(prompt: str):
    import time

    start_time = time.time()
    
    # Querying

    querying = Pipeline()
    querying.add_component("sparse_text_embedder", FastembedSparseTextEmbedder(model="prithvida/Splade_PP_en_v1"))
    querying.add_component("dense_text_embedder", FastembedTextEmbedder(
     model="BAAI/bge-small-en-v1.5", prefix="Represent this sentence for searching relevant passages: ")
     )
    querying.add_component("retriever", QdrantHybridRetriever(document_store=document_store))
    
    querying.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
    querying.connect("dense_text_embedder.embedding", "retriever.query_embedding")
    
    question = "Cosa sono i marker tumorali?"
    
    results = querying.run(
        {"dense_text_embedder": {"text": question},
         "sparse_text_embedder": {"text": question}}
    )


    end_time = time.time()

    elapsed_time = end_time - start_time

    print(f"Execution time: {elapsed_time:.6f} seconds")
    
    return results["retriever"]["documents"]

@app.get("/download-database/")
async def download_database():
    import time

    start_time = time.time()
    
    # Path to the database directory
    database_dir = join(os.getcwd(), 'database')
    # Path for the zip file
    zip_path = join(os.getcwd(), 'database.zip')
    
    # Create a zip file of the database directory
    shutil.make_archive(zip_path.replace('.zip', ''), 'zip', database_dir)

    end_time = time.time()

    elapsed_time = end_time - start_time

    print(f"Execution time: {elapsed_time:.6f} seconds")
    
    # Return the zip file as a response for download
    return FileResponse(zip_path, media_type='application/zip', filename='database.zip')
    
@app.get("/")
def api_home():
    return {'detail': 'Welcome to FastAPI Qdrant importer!'}