File size: 8,082 Bytes
14c412e
 
 
 
 
 
 
d542db8
01c41a2
742920d
14c412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb9001
 
14c412e
 
742920d
 
 
 
 
14c412e
 
 
742920d
14c412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c6327d
 
 
14c412e
 
 
 
2c6327d
14c412e
 
 
 
 
 
 
 
2c6327d
14c412e
 
 
 
 
 
 
 
 
 
 
 
01c41a2
14c412e
 
 
 
01c41a2
 
 
 
 
 
 
 
 
 
14c412e
 
01c41a2
 
14c412e
742920d
 
 
01c41a2
14c412e
01c41a2
742920d
01c41a2
742920d
01c41a2
14c412e
01c41a2
14c412e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
import subprocess
import time
from ollama import chat
from ollama import ChatResponse

# Default model
OLLAMA_MODEL = "llama3.2:3b"
# OLLAMA_MODEL = "llama3.2:1b"
# OLLAMA_MODEL = "llama3.2:3b-instruct-q2_K"

# Load BERT MODEL
from transformers import pipeline, DistilBertTokenizerFast

# Path to your locally saved model
# bert_model_path = "fine_tuned_aita_classifier"
bert_model_path = "dingusagar/distillbert-aita-classifier"

tokenizer = DistilBertTokenizerFast.from_pretrained(bert_model_path)
classifier = pipeline(
    "text-classification",
    model=bert_model_path,  # Path to your locally saved model
    tokenizer=tokenizer,  # Use the tokenizer saved with the model
    truncation=True
)

bert_label_map = {
    'LABEL_0': 'YTA',
    'LABEL_1': 'NTA',
}

bert_label_map_formatted = {
    'LABEL_0': 'You are the A**hole (YTA)',
    'LABEL_1': 'Not the A**hole (NTA)',
}

def ask_bert(prompt):
    print(f"Getting response from Fine-tuned BERT")
    result = classifier([prompt])[0]
    label = result['label']
    confidence = f"{result['score']*100:.2f}"
    return label, confidence

def start_ollama_server():
    # Start Ollama server in the background
    print("Starting Ollama server...")
    subprocess.Popen(["ollama", "serve"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    time.sleep(5)  # Give some time for the server to start

    # Pull the required model
    print(f"Pulling the model: {OLLAMA_MODEL}")
    subprocess.run(["ollama", "pull", OLLAMA_MODEL], check=True)

    print("Starting the required model...")
    subprocess.Popen(["ollama", "run", OLLAMA_MODEL], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    print("Ollama started model.")

def ask_ollama(question, expected_class=""):
    print(f"Getting response from Ollama")
    classify_and_explain_prompt = f"""
### You are an unbiased expert from subreddit community r/AmItheAsshole. In this community people post their life situations and ask if they are the asshole or not. 
The community uses the following acronyms. 
AITA : Am I the asshole? Usually posted in the question. 
YTA : You are the asshole in this situation.  
NTA : You are not the asshole in this situation.

### The task for you label YTA or NTA for the given text. Give a short explanation for the label. Be brutally honest and unbiased. Base your explanation entirely on the given text only. 

If the label is YTA, also explain what could the user have done better.  
### The output format is as follows:
"YTA" or "NTA", a short explanation. 

### Situation :  {question}
### Response :"""

    explain_only_prompt =  f"""
### You know about the subreddit community r/AmItheAsshole. In this community people post their life situations and ask if they are the asshole or not. 
The community uses the following acronyms. 
AITA : Am I the asshole? Usually posted in the question. 
YTA : You are the asshole in this situation.  
NTA : You are not the asshole in this situation.

### The task for you explain why a particular situation was tagged as NTA or YTA by most users. I will give the situation as well as the NTA or YTA tag. just give your explanation for the label. Be nice but give a brutally honest and unbiased view. Base your explanation entirely on the given text and the label tag only. Do not assume anything extra.  
Use second person terms like you in the explanation.

### Situation :  {question}
### Label Tag : {expected_class}
### Explanation for {expected_class} :"""

    if expected_class == "":
        prompt = classify_and_explain_prompt
    else:
        prompt = explain_only_prompt

    print(f"Prompt to llama : {prompt}")
    stream = chat(model=OLLAMA_MODEL, messages=[
        {
            'role': 'user',
            'content': prompt,
        },
    ], stream=True)
    response = ""
    for chunk in stream:
        response += chunk['message']['content']
        yield response


# Separate function for Ollama response
def gradio_ollama_interface(prompt, bert_class=""):
    return ask_ollama(prompt, expected_class=bert_class)
def gradio_interface(prompt, selected_model):
    if selected_model == MODEL_CHOICE_LLAMA:
        for chunk in ask_ollama(prompt):
            yield chunk
    elif selected_model == MODEL_CHOICE_BERT:
        label, confidence = ask_bert(prompt)
        label = bert_label_map_formatted[label]
        response = f"{label} with confidence {confidence}"
        return response
    elif selected_model == MODEL_CHOICE_BERT_LLAMA:
        label, confidence = ask_bert(prompt)
        initial_response = f"Response from BERT model:  {bert_label_map_formatted[label]} with confidence {confidence}%\n\nGenerating explanation using Llama model...\n"
        yield initial_response
        for chunk in ask_ollama(prompt, expected_class=bert_label_map[label]):
            yield initial_response + "\n" + chunk
    else:
        return "Something went wrong. Select the correct model configuration from settings. "

MODEL_CHOICE_BERT_LLAMA = "Fine-tuned BERT (classification) + Llama 3.2 3B (explanation)"
MODEL_CHOICE_BERT = "Fine-tuned BERT (classification only)"
MODEL_CHOICE_LLAMA = "Llama 3.2 3B (classification + explanation)"

MODEL_OPTIONS = [MODEL_CHOICE_BERT_LLAMA, MODEL_CHOICE_LLAMA, MODEL_CHOICE_BERT]

# Example texts
EXAMPLES = [
    "I refused to invite my coworker to my birthday party even though we’re part of the same friend group. AITA?",
    "I didn't attend my best friend's wedding because I couldn't afford the trip. Now they are mad at me. AITA?",
    "I told my coworker they were being unprofessional during a meeting in front of everyone. AITA?",
    "I told my kid that she should become an engineer like me, she is into painting and wants to pursue arts. AITA? "
]

# Build the Gradio app
# with gr.Blocks(theme="JohnSmith9982/small_and_pretty")  as demo:
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.green, secondary_hue=gr.themes.colors.purple)) as demo:
    gr.Markdown("# AITA Classifier")
    gr.Markdown(
        """### Ask this AI app if you are wrong in a situation. Describe the conflict you experienced, give both sides of the story and find out if you are right (NTA) or, you are the a**shole (YTA). Inspired by the subreddit [r/AmItheAsshole](https://www.reddit.com/r/AmItheAsshole/), this app tries to provide honest and unbiased assessments of user's life situations.
        <sub>**Disclaimer:** The responses generated by this AI model are based on the training data derived from the subreddit posts and do not represent the views or opinions of the creators or authors. This was our fun little project, please don't take the generated responses too seriously :) </sub>
        """)

    # Add Accordion for settings
    # with gr.Accordion("Settings", open=True):
    #     model_selector = gr.Dropdown(
    #         label="Select Models",
    #         choices=MODEL_OPTIONS,
    #         value=MODEL_CHOICE_BERT_LLAMA
    #     )

    with gr.Row():
        model_selector = gr.Dropdown(
                label="Selected Model",
                choices=MODEL_OPTIONS,
                value=MODEL_CHOICE_BERT_LLAMA
            )

    with gr.Row():
        input_prompt = gr.Textbox(label="Enter your situation here", placeholder="Am I the a**hole for...", lines=5)

    with gr.Row():
        # Add example texts
        example = gr.Examples(
            examples=EXAMPLES,
            inputs=input_prompt,
            label="Want to quickly try some example situations ?",
        )

    with gr.Row():
        submit_button = gr.Button("Check A**hole or not!", variant="primary")

    with gr.Row():
        output_response = gr.Textbox(label="Response", lines=10, placeholder="""Result will be YTA (you are the A**hole) or NTA(Not the A**shole)""")

    # Link the button click to the interface function
    submit_button.click(gradio_interface, inputs=[input_prompt, model_selector], outputs=output_response)

# Launch the app
if __name__ == "__main__":
    start_ollama_server()
    demo.launch(server_name="0.0.0.0", server_port=7860, share=False)