Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import os
|
|
3 |
import gradio as gr
|
4 |
from dotenv import load_dotenv
|
5 |
import io
|
|
|
|
|
6 |
|
7 |
# Load environment variables (where your OpenAI key will be stored)
|
8 |
load_dotenv()
|
@@ -10,17 +12,17 @@ load_dotenv()
|
|
10 |
# Load the OpenAI API key from environment variables and strip any trailing newlines or spaces
|
11 |
openai.api_key = os.getenv("OPENAI_API_KEY").strip()
|
12 |
|
13 |
-
# Function to analyze the ad
|
14 |
def analyze_ad(image):
|
15 |
-
#
|
16 |
-
|
17 |
-
image.save(image_bytes, format='PNG')
|
18 |
-
image_bytes = image_bytes.getvalue()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
1. Relevance to Target Audience: Is the ad appealing to the intended demographic?
|
26 |
2. Emotional Engagement: Does the ad evoke the right emotional response?
|
@@ -28,35 +30,20 @@ def analyze_ad(image):
|
|
28 |
4. Creativity: How unique or innovative is the ad's design and text approach?
|
29 |
5. Persuasiveness: Does the ad motivate action, such as clicking or purchasing?
|
30 |
|
|
|
|
|
31 |
Provide the persona description and the scores in table form with a final score.
|
32 |
"""
|
33 |
|
34 |
-
# Send the
|
35 |
response = openai.ChatCompletion.create(
|
36 |
-
model="gpt-4o-mini", # Use the
|
37 |
messages=[
|
38 |
{"role": "system", "content": "You are a marketing expert analyzing an advertisement."},
|
39 |
{"role": "user", "content": prompt}
|
40 |
],
|
41 |
temperature=0.7,
|
42 |
-
max_tokens=400
|
43 |
-
functions=[
|
44 |
-
{
|
45 |
-
"name": "analyze_image",
|
46 |
-
"description": "Analyze an image to extract text and generate marketing insights",
|
47 |
-
"parameters": {
|
48 |
-
"type": "image",
|
49 |
-
"properties": {
|
50 |
-
"image": {
|
51 |
-
"type": "string",
|
52 |
-
"description": "The input image for analysis"
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"required": ["image"]
|
56 |
-
}
|
57 |
-
}
|
58 |
-
],
|
59 |
-
function_call={"name": "analyze_image", "arguments": {"image": image_bytes}} # Sending the image as input
|
60 |
)
|
61 |
|
62 |
# Extract the response text from the API output
|
|
|
3 |
import gradio as gr
|
4 |
from dotenv import load_dotenv
|
5 |
import io
|
6 |
+
from PIL import Image
|
7 |
+
import pytesseract # Import Tesseract OCR
|
8 |
|
9 |
# Load environment variables (where your OpenAI key will be stored)
|
10 |
load_dotenv()
|
|
|
12 |
# Load the OpenAI API key from environment variables and strip any trailing newlines or spaces
|
13 |
openai.api_key = os.getenv("OPENAI_API_KEY").strip()
|
14 |
|
15 |
+
# Function to analyze the ad and generate marketing personas + scoring
|
16 |
def analyze_ad(image):
|
17 |
+
# Extract text from the image using Tesseract OCR
|
18 |
+
ad_copy = pytesseract.image_to_string(image)
|
|
|
|
|
19 |
|
20 |
+
if not ad_copy.strip(): # Check if OCR extracted any text
|
21 |
+
return "No text was detected in the image. Please upload a clearer ad image."
|
22 |
+
|
23 |
+
# Prompt for the marketing persona and scoring rubric
|
24 |
+
prompt = f"""
|
25 |
+
Analyze the following ad copy and generate a marketing persona. Then, provide a score (out of 10) for each of the following:
|
26 |
|
27 |
1. Relevance to Target Audience: Is the ad appealing to the intended demographic?
|
28 |
2. Emotional Engagement: Does the ad evoke the right emotional response?
|
|
|
30 |
4. Creativity: How unique or innovative is the ad's design and text approach?
|
31 |
5. Persuasiveness: Does the ad motivate action, such as clicking or purchasing?
|
32 |
|
33 |
+
Ad Copy: {ad_copy}
|
34 |
+
|
35 |
Provide the persona description and the scores in table form with a final score.
|
36 |
"""
|
37 |
|
38 |
+
# Send the prompt to GPT-4o-mini for analysis
|
39 |
response = openai.ChatCompletion.create(
|
40 |
+
model="gpt-4o-mini", # Use the gpt-4o-mini model as requested
|
41 |
messages=[
|
42 |
{"role": "system", "content": "You are a marketing expert analyzing an advertisement."},
|
43 |
{"role": "user", "content": prompt}
|
44 |
],
|
45 |
temperature=0.7,
|
46 |
+
max_tokens=400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
# Extract the response text from the API output
|