Spaces:
Running
on
Zero
Running
on
Zero
add zerogpu dev
Browse files- demo/img_gen.py +4 -5
- demo/relighting_gen.py +4 -5
demo/img_gen.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
4 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
@@ -6,17 +7,15 @@ from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
6 |
|
7 |
model_id = "stabilityai/stable-diffusion-2-1"
|
8 |
|
9 |
-
device = torch.device('
|
10 |
-
dtype = torch.
|
11 |
-
if torch.cuda.is_available():
|
12 |
-
device = torch.device('cuda')
|
13 |
-
dtype = torch.float16
|
14 |
|
15 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
|
16 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
17 |
pipe = pipe.to(device)
|
18 |
|
19 |
|
|
|
20 |
def img_gen(prompt, seed, steps, cfg, down_from_768=False, progress=gr.Progress(track_tqdm=True)):
|
21 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
22 |
hw = 512 if not down_from_768 else 768
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
|
7 |
|
8 |
model_id = "stabilityai/stable-diffusion-2-1"
|
9 |
|
10 |
+
device = torch.device('cuda')
|
11 |
+
dtype = torch.float16
|
|
|
|
|
|
|
12 |
|
13 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
|
14 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
15 |
pipe = pipe.to(device)
|
16 |
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
def img_gen(prompt, seed, steps, cfg, down_from_768=False, progress=gr.Progress(track_tqdm=True)):
|
20 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
21 |
hw = 512 if not down_from_768 else 768
|
demo/relighting_gen.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
import imageio
|
2 |
import numpy as np
|
|
|
3 |
import torch
|
4 |
from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline
|
5 |
from diffusers.utils import get_class_from_dynamic_module
|
6 |
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
-
device = torch.device('
|
10 |
-
dtype = torch.
|
11 |
-
if torch.cuda.is_available():
|
12 |
-
device = torch.device('cuda')
|
13 |
-
dtype = torch.float16
|
14 |
|
15 |
NeuralTextureControlNetModel = get_class_from_dynamic_module(
|
16 |
"dilightnet/model_helpers",
|
@@ -28,6 +26,7 @@ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
28 |
pipe.set_progress_bar_config(disable=True)
|
29 |
|
30 |
|
|
|
31 |
def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg):
|
32 |
mask = mask[..., :1] / 255.
|
33 |
for i in tqdm(range(frames)):
|
|
|
1 |
import imageio
|
2 |
import numpy as np
|
3 |
+
import spaces
|
4 |
import torch
|
5 |
from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline
|
6 |
from diffusers.utils import get_class_from_dynamic_module
|
7 |
|
8 |
from tqdm import tqdm
|
9 |
|
10 |
+
device = torch.device('cuda')
|
11 |
+
dtype = torch.float16
|
|
|
|
|
|
|
12 |
|
13 |
NeuralTextureControlNetModel = get_class_from_dynamic_module(
|
14 |
"dilightnet/model_helpers",
|
|
|
26 |
pipe.set_progress_bar_config(disable=True)
|
27 |
|
28 |
|
29 |
+
@spaces.GPU
|
30 |
def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg):
|
31 |
mask = mask[..., :1] / 255.
|
32 |
for i in tqdm(range(frames)):
|