Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
from typing import Optional | |
import numpy as np | |
import cv2 | |
import torch | |
import trimesh | |
import spaces | |
from dust3r.model import AsymmetricCroCo3DStereo | |
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode | |
from dust3r.inference import inference | |
from dust3r.image_pairs import make_pairs | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt").to(device).eval() | |
import torchvision.transforms as tvf | |
import PIL.Image | |
import numpy as np | |
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
def load_single_image(img_array): | |
imgs = [] | |
for i in range(2): | |
img = PIL.Image.fromarray(img_array) | |
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32( | |
[img.size[::-1]]), idx=i, instance=str(len(imgs)))) | |
return imgs | |
def get_intrinsics(H, W, fov=55.): | |
""" | |
Intrinsics for a pinhole camera model. | |
Assume central principal point. | |
""" | |
f = 0.5 * W / np.tan(0.5 * fov * np.pi / 180.0) | |
cx = 0.5 * W | |
cy = 0.5 * H | |
return np.array([[f, 0, cx], | |
[0, f, cy], | |
[0, 0, 1]]) | |
def depth_to_points(depth, R=None, t=None, fov=55.): | |
K = get_intrinsics(depth.shape[1], depth.shape[2], fov=fov) | |
Kinv = np.linalg.inv(K) | |
if R is None: | |
R = np.eye(3) | |
if t is None: | |
t = np.zeros(3) | |
# M converts from your coordinate to PyTorch3D's coordinate system | |
M = np.eye(3) | |
M[0, 0] = -1.0 | |
M[1, 1] = -1.0 | |
height, width = depth.shape[1:3] | |
x = np.arange(width) | |
y = np.arange(height) | |
coord = np.stack(np.meshgrid(x, y), -1) | |
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) # z=1 | |
coord = coord.astype(np.float32) | |
coord = coord[None] # bs, h, w, 3 | |
D = depth[:, :, :, None, None] | |
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None] | |
# pts3D_1 live in your coordinate system. Convert them to Py3D's | |
pts3D_1 = M[None, None, None, ...] @ pts3D_1 | |
# from reference to targe tviewpoint | |
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None] | |
return pts3D_2[:, :, :, :3, 0][0] | |
def create_triangles(h, w, mask=None): | |
""" | |
Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68 | |
Creates mesh triangle indices from a given pixel grid size. | |
This function is not and need not be differentiable as triangle indices are | |
fixed. | |
Args: | |
h: (int) denoting the height of the image. | |
w: (int) denoting the width of the image. | |
Returns: | |
triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3) | |
""" | |
x, y = np.meshgrid(range(w - 1), range(h - 1)) | |
tl = y * w + x | |
tr = y * w + x + 1 | |
bl = (y + 1) * w + x | |
br = (y + 1) * w + x + 1 | |
triangles = np.array([tl, bl, tr, br, tr, bl]) | |
triangles = np.transpose(triangles, (1, 2, 0)).reshape( | |
((w - 1) * (h - 1) * 2, 3)) | |
if mask is not None: | |
mask = mask.reshape(-1) | |
triangles = triangles[mask[triangles].all(1)] | |
return triangles | |
def depth_edges_mask(depth): | |
"""Returns a mask of edges in the depth map. | |
Args: | |
depth: 2D numpy array of shape (H, W) with dtype float32. | |
Returns: | |
mask: 2D numpy array of shape (H, W) with dtype bool. | |
""" | |
# Compute the x and y gradients of the depth map. | |
depth_dx, depth_dy = np.gradient(depth) | |
# Compute the gradient magnitude. | |
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) | |
# Compute the edge mask. | |
mask = depth_grad > 0.05 | |
return mask | |
def mesh_reconstruction( | |
masked_image: np.ndarray, | |
mask: np.ndarray, | |
remove_edges: bool = True, | |
fov: Optional[float] = None, | |
mask_threshold: float = 25., | |
): | |
masked_image = cv2.resize(masked_image, (512, 512)) | |
mask = cv2.resize(mask, (512, 512)) | |
images = load_single_image(masked_image) | |
pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True) | |
output = inference(pairs, model, device, batch_size=1) | |
scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer) | |
if fov is not None: | |
# do not optimize focal length if fov is provided | |
focal = scene.imshapes[0][1] / (2 * np.tan(0.5 * fov * np.pi / 180.)) | |
scene.preset_focal([focal, focal]) | |
_loss = scene.compute_global_alignment(init='mst', niter=300, schedule='cosine', lr=0.01) | |
if fov is None: | |
# get the focal length from the optimized parameters | |
focals = scene.get_focals() | |
fov = 2 * (np.arctan((scene.imshapes[0][1] / (focals[0] + focals[1])).detach().cpu().numpy()) * 180 / np.pi)[0] | |
depth = scene.get_depthmaps()[0].detach().cpu().numpy() | |
if device.type == 'cuda': | |
torch.cuda.empty_cache() | |
rgb = masked_image[..., :3].transpose(2, 0, 1) / 255. | |
pts3d = depth_to_points(depth[None], fov=fov) | |
pts3d = pts3d.reshape(-1, 3) | |
pts3d = pts3d.reshape(-1, 3) | |
verts = pts3d.reshape(-1, 3) | |
rgb = rgb.transpose(1, 2, 0) | |
mask = mask[..., 0] > mask_threshold | |
edge_mask = depth_edges_mask(depth) | |
if remove_edges: | |
mask = np.logical_and(mask, ~edge_mask) | |
triangles = create_triangles(rgb.shape[0], rgb.shape[1], mask=mask) | |
colors = rgb.reshape(-1, 3) | |
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors) | |
# Save as glb tmp file (obj will look inverted in ui) | |
mesh_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
mesh_file_path = mesh_file.name | |
mesh.export(mesh_file_path) | |
return mesh_file_path, fov | |