DiLightNet / demo /mesh_recon.py
NCJ's picture
init
084ab29 verified
raw
history blame
4.25 kB
import tempfile
import numpy as np
import torch
import trimesh
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# use torch hub
model = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).to(device).eval()
def get_intrinsics(H, W, fov=55.):
"""
Intrinsics for a pinhole camera model.
Assume central principal point.
"""
f = 0.5 * W / np.tan(0.5 * fov * np.pi / 180.0)
cx = 0.5 * W
cy = 0.5 * H
return np.array([[f, 0, cx],
[0, f, cy],
[0, 0, 1]])
def depth_to_points(depth, R=None, t=None, fov=55.):
K = get_intrinsics(depth.shape[1], depth.shape[2], fov=fov)
Kinv = np.linalg.inv(K)
if R is None:
R = np.eye(3)
if t is None:
t = np.zeros(3)
# M converts from your coordinate to PyTorch3D's coordinate system
M = np.eye(3)
M[0, 0] = -1.0
M[1, 1] = -1.0
height, width = depth.shape[1:3]
x = np.arange(width)
y = np.arange(height)
coord = np.stack(np.meshgrid(x, y), -1)
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) # z=1
coord = coord.astype(np.float32)
coord = coord[None] # bs, h, w, 3
D = depth[:, :, :, None, None]
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None]
# pts3D_1 live in your coordinate system. Convert them to Py3D's
pts3D_1 = M[None, None, None, ...] @ pts3D_1
# from reference to targe tviewpoint
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None]
return pts3D_2[:, :, :, :3, 0][0]
def create_triangles(h, w, mask=None):
"""
Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68
Creates mesh triangle indices from a given pixel grid size.
This function is not and need not be differentiable as triangle indices are
fixed.
Args:
h: (int) denoting the height of the image.
w: (int) denoting the width of the image.
Returns:
triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3)
"""
x, y = np.meshgrid(range(w - 1), range(h - 1))
tl = y * w + x
tr = y * w + x + 1
bl = (y + 1) * w + x
br = (y + 1) * w + x + 1
triangles = np.array([tl, bl, tr, br, tr, bl])
triangles = np.transpose(triangles, (1, 2, 0)).reshape(
((w - 1) * (h - 1) * 2, 3))
if mask is not None:
mask = mask.reshape(-1)
triangles = triangles[mask[triangles].all(1)]
return triangles
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def mesh_reconstruction(
masked_image: np.ndarray,
mask: np.ndarray,
remove_edges: bool = True,
fov: float = 55.,
mask_threshold: float = 25.,
):
rgb = masked_image[..., :3].transpose(2, 0, 1) / 255.
sample = torch.from_numpy(rgb).to(device).unsqueeze(0).float()
with torch.no_grad():
depth = model.infer(sample)
depth = depth.squeeze().cpu().numpy()
pts3d = depth_to_points(depth[None], fov=fov)
pts3d = pts3d.reshape(-1, 3)
pts3d = pts3d.reshape(-1, 3)
verts = pts3d.reshape(-1, 3)
rgb = rgb.transpose(1, 2, 0)
mask = mask[..., 0] > mask_threshold
edge_mask = depth_edges_mask(depth)
if remove_edges:
mask = np.logical_and(mask, ~edge_mask)
triangles = create_triangles(rgb.shape[0], rgb.shape[1], mask=mask)
colors = rgb.reshape(-1, 3)
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
# Save as glb tmp file (obj will look inverted in ui)
mesh_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
mesh_file_path = mesh_file.name
mesh.export(mesh_file_path)
return mesh_file_path