patrickvonplaten
commited on
Commit
·
32e2fdf
1
Parent(s):
330339d
upload tool
Browse files- __init__.py +0 -0
- app.py +4 -0
- image_transformation.py +89 -0
- requirements.txt +5 -0
- tool_config.json +7 -0
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.tools.base import launch_gradio_demo
|
2 |
+
from image_transformation import ImageTransformationTool
|
3 |
+
|
4 |
+
launch_gradio_demo(ImageTransformationTool)
|
image_transformation.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from transformers.tools import Tool
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from transformers.tools.base import Tool, get_default_device
|
8 |
+
from transformers.utils import (
|
9 |
+
is_accelerate_available,
|
10 |
+
is_diffusers_available,
|
11 |
+
is_vision_available,
|
12 |
+
is_opencv_available,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
if is_vision_available():
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
if is_diffusers_available():
|
20 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
21 |
+
|
22 |
+
if is_opencv_available():
|
23 |
+
import cv2
|
24 |
+
|
25 |
+
|
26 |
+
IMAGE_TRANSFORMATION_DESCRIPTION = (
|
27 |
+
"This is a tool that transforms an image with ControlNet according to a prompt. It takes two inputs: `image`, which should be "
|
28 |
+
"the image to transform, and `prompt`, which should be the prompt to use to change it. It returns the "
|
29 |
+
"modified image."
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class ControlNetTransformationTool(Tool):
|
34 |
+
default_stable_diffusion_checkpoint = "runwayml/stable-diffusion-v1-5"
|
35 |
+
default_controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny"
|
36 |
+
description = IMAGE_TRANSFORMATION_DESCRIPTION
|
37 |
+
inputs = ['image', 'text']
|
38 |
+
outputs = ['image']
|
39 |
+
|
40 |
+
def __init__(self, device=None, controlnet=None, stable_diffusion=None, **hub_kwargs) -> None:
|
41 |
+
if not is_accelerate_available():
|
42 |
+
raise ImportError("Accelerate should be installed in order to use tools.")
|
43 |
+
if not is_diffusers_available():
|
44 |
+
raise ImportError("Diffusers should be installed in order to use the StableDiffusionTool.")
|
45 |
+
if not is_vision_available():
|
46 |
+
raise ImportError("Pillow should be installed in order to use the StableDiffusionTool.")
|
47 |
+
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.stable_diffusion = self.default_stable_diffusion_checkpoint
|
51 |
+
self.controlnet = self.default_controlnet_checkpoint
|
52 |
+
|
53 |
+
self.device = device
|
54 |
+
self.hub_kwargs = hub_kwargs
|
55 |
+
|
56 |
+
def setup(self):
|
57 |
+
if self.device is None:
|
58 |
+
self.device = get_default_device()
|
59 |
+
|
60 |
+
controlnet = ControlNetModel.from_pretrained(self.controlnet)
|
61 |
+
self.pipeline = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion, controlnet=controlnet)
|
62 |
+
self.pipeline.scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config)
|
63 |
+
|
64 |
+
self.pipeline.to(self.device)
|
65 |
+
if self.device.type == "cuda":
|
66 |
+
self.pipeline.to(torch_dtype=torch.float16)
|
67 |
+
|
68 |
+
self.is_initialized = True
|
69 |
+
|
70 |
+
def __call__(self, image, prompt):
|
71 |
+
if not self.is_initialized:
|
72 |
+
self.setup()
|
73 |
+
|
74 |
+
image = np.array(image)
|
75 |
+
|
76 |
+
image = cv2.Canny(image, 100, 200)
|
77 |
+
image = image[:, :, None]
|
78 |
+
image = np.concatenate([image, image, image], axis=2)
|
79 |
+
image = Image.fromarray(image)
|
80 |
+
|
81 |
+
negative_prompt = "low quality, bad quality, deformed, low resolution"
|
82 |
+
added_prompt = " , highest quality, highly realistic, very high resolution"
|
83 |
+
|
84 |
+
return self.pipeline(
|
85 |
+
prompt + added_prompt,
|
86 |
+
image,
|
87 |
+
negative_prompt=negative_prompt,
|
88 |
+
num_inference_steps=30,
|
89 |
+
).images[0]
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers @ git+https://github.com/huggingface/transformers@test_composition
|
2 |
+
diffusers
|
3 |
+
accelerate
|
4 |
+
opencv-python
|
5 |
+
torch
|
tool_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image-transformation": {
|
3 |
+
"tool_class": "image_transformation.ControlNetTransformationTool",
|
4 |
+
"description": "This is a tool that transforms an image according to a prompt. It takes two inputs: `image`, which should be the image to transform, and `prompt`, which should be the prompt to use to change it. The prompt should only contain descriptive adjectives, as if completing the prompt of the original image. It returns the modified image.",
|
5 |
+
"name": "image_transformer"
|
6 |
+
}
|
7 |
+
}
|