Spaces:
Runtime error
Runtime error
Use canny
Browse files
app.py
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
2 |
from diffusers import UniPCMultistepScheduler
|
3 |
import gradio as gr
|
|
|
4 |
import torch
|
5 |
import base64
|
|
|
6 |
from io import BytesIO
|
7 |
from PIL import Image, ImageFilter
|
8 |
|
|
|
|
|
|
|
|
|
9 |
canvas_html = '<pose-maker/>'
|
10 |
load_js = """
|
11 |
async () => {
|
@@ -31,7 +37,7 @@ async (canvas, prompt) => {
|
|
31 |
|
32 |
# Models
|
33 |
controlnet = ControlNetModel.from_pretrained(
|
34 |
-
"lllyasviel/sd-controlnet-
|
35 |
)
|
36 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
37 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
@@ -48,6 +54,15 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
48 |
# Generator seed,
|
49 |
generator = torch.manual_seed(0)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def generate_images(canvas, prompt):
|
53 |
try:
|
@@ -56,6 +71,7 @@ def generate_images(canvas, prompt):
|
|
56 |
input_img = Image.open(BytesIO(image_data)).convert(
|
57 |
'RGB').resize((512, 512))
|
58 |
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
|
|
|
59 |
output = pipe(
|
60 |
prompt,
|
61 |
input_img,
|
|
|
1 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
2 |
from diffusers import UniPCMultistepScheduler
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
import torch
|
6 |
import base64
|
7 |
+
import cv2
|
8 |
from io import BytesIO
|
9 |
from PIL import Image, ImageFilter
|
10 |
|
11 |
+
# Constants
|
12 |
+
low_threshold = 100
|
13 |
+
high_threshold = 200
|
14 |
+
|
15 |
canvas_html = '<pose-maker/>'
|
16 |
load_js = """
|
17 |
async () => {
|
|
|
37 |
|
38 |
# Models
|
39 |
controlnet = ControlNetModel.from_pretrained(
|
40 |
+
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
|
41 |
)
|
42 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
43 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
|
|
54 |
# Generator seed,
|
55 |
generator = torch.manual_seed(0)
|
56 |
|
57 |
+
def get_canny_filter(image):
|
58 |
+
if not isinstance(image, np.ndarray):
|
59 |
+
image = np.array(image)
|
60 |
+
|
61 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
62 |
+
image = image[:, :, None]
|
63 |
+
image = np.concatenate([image, image, image], axis=2)
|
64 |
+
canny_image = Image.fromarray(image)
|
65 |
+
return canny_image
|
66 |
|
67 |
def generate_images(canvas, prompt):
|
68 |
try:
|
|
|
71 |
input_img = Image.open(BytesIO(image_data)).convert(
|
72 |
'RGB').resize((512, 512))
|
73 |
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=5))
|
74 |
+
input_img = get_canny_filter(input_img)
|
75 |
output = pipe(
|
76 |
prompt,
|
77 |
input_img,
|