Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from diffusers import UniPCMultistepScheduler | |
import gradio as gr | |
import numpy as np | |
import torch | |
import base64 | |
import cv2 | |
from io import BytesIO | |
from PIL import Image, ImageFilter | |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css | |
# Constants | |
low_threshold = 100 | |
high_threshold = 200 | |
canvas_html = '<pose-maker/>' | |
load_js = """ | |
async () => { | |
const url = "https://huggingface.co/datasets/mishig/gradio-components/raw/main/mannequinAll.js" | |
fetch(url) | |
.then(res => res.text()) | |
.then(text => { | |
const script = document.createElement('script'); | |
script.type = "module" | |
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); | |
document.head.appendChild(script); | |
}); | |
} | |
""" | |
get_js_image = """ | |
async (canvas, prompt) => { | |
const poseMakerEl = document.querySelector("pose-maker"); | |
const imgBase64 = poseMakerEl.captureScreenshotDepthMap(); | |
return [imgBase64, prompt] | |
} | |
""" | |
# Models | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# This command loads the individual model components on GPU on-demand. So, we don't | |
# need to explicitly call pipe.to("cuda"). | |
pipe.enable_model_cpu_offload() | |
# xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
# Generator seed, | |
generator = torch.manual_seed(0) | |
def get_canny_filter(image): | |
if not isinstance(image, np.ndarray): | |
image = np.array(image) | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def generate_images(canvas, prompt): | |
try: | |
base64_img = canvas | |
image_data = base64.b64decode(base64_img.split(',')[1]) | |
input_img = Image.open(BytesIO(image_data)).convert( | |
'RGB').resize((512, 512)) | |
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=2)) | |
input_img = get_canny_filter(input_img) | |
output = pipe( | |
f'{prompt}, best quality, extremely detailed', | |
input_img, | |
generator=generator, | |
num_images_per_prompt=2, | |
num_inference_steps=20, | |
negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
) | |
all_outputs = [] | |
for image in output.images: | |
all_outputs.append(image) | |
return all_outputs | |
except Exception as e: | |
raise gr.Error(str(e)) | |
def placeholder_fn(axis): | |
pass | |
js_change_rotation_axis = """ | |
async (axis) => { | |
const poseMakerEl = document.querySelector("pose-maker"); | |
poseMakerEl.changeRotationAxis(axis); | |
} | |
""" | |
js_pose_template = """ | |
async (pose) => { | |
const poseMakerEl = document.querySelector("pose-maker"); | |
poseMakerEl.setPose(pose); | |
} | |
""" | |
with gr.Blocks(css=share_btn_css) as blocks: | |
gr.HTML( | |
""" | |
<div style="text-align: center; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px"> | |
Pose in 3D & Render with ControlNet (SD-1.5) | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;"> | |
Using <a href="https://github.com/lllyasviel/ControlNet">ControlNet</a> and <a href="https://boytchev.github.io/mannequin.js/">three.js/mannequin.js</a> | |
</p> | |
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/diffusers/controlnet-3d-pose?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True) | |
with gr.Row(): | |
rotation_axis = gr.Radio(["x", "y", "z"], value="x", label="Joint rotation axis") | |
pose_template = gr.Radio(["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template") | |
prompt = gr.Textbox( | |
label="Enter your prompt", | |
max_lines=1, | |
placeholder="best quality, extremely detailed", | |
elem_id="prompt", | |
) | |
run_button = gr.Button("Generate") | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
with gr.Column(): | |
gallery = gr.Gallery(elem_id="gallery").style(grid=[2], height="auto") | |
rotation_axis.change(fn=placeholder_fn, | |
inputs=[rotation_axis], | |
outputs=[], | |
queue=False, | |
_js=js_change_rotation_axis) | |
pose_template.change(fn=placeholder_fn, | |
inputs=[pose_template], | |
outputs=[], | |
queue=False, | |
_js=js_pose_template) | |
run_button.click(fn=generate_images, | |
inputs=[canvas, prompt], | |
outputs=[gallery], | |
_js=get_js_image) | |
share_button.click(None, [], [], _js=share_js) | |
blocks.load(None, None, None, _js=load_js) | |
blocks.launch(debug=True) | |