Spaces:
Running
Running
import subprocess | |
import torch | |
# if torch.cuda.is_available(): | |
# subprocess.run('sh deform_setup.sh', shell=True) | |
print("Installed the dependencies!") | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import imutils | |
from detectron2.config import get_cfg | |
from detectron2.projects.deeplab import add_deeplab_config | |
from detectron2.data import MetadataCatalog | |
from oneformer import ( | |
add_oneformer_config, | |
add_common_config, | |
add_swin_config, | |
add_dinat_config, | |
) | |
from demo.defaults import DefaultPredictor | |
from demo.visualizer import Visualizer, ColorMode | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
KEY_DICT = {"Cityscapes (19 classes)": "cityscapes", | |
"COCO (133 classes)": "coco", | |
"ADE20K (150 classes)": "ade20k",} | |
SWIN_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_swin_large_IN21k_384_bs16_90k.yaml", | |
"coco": "configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml", | |
"ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",} | |
SWIN_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_cityscapes", | |
filename="250_16_swin_l_oneformer_cityscapes_90k.pth"), | |
"coco": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_coco", | |
filename="150_16_swin_l_oneformer_coco_100ep.pth"), | |
"ade20k": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_ade20k", | |
filename="250_16_swin_l_oneformer_ade20k_160k.pth") | |
} | |
DINAT_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_dinat_large_bs16_90k.yaml", | |
"coco": "configs/coco/oneformer_dinat_large_bs16_100ep.yaml", | |
"ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",} | |
DINAT_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_cityscapes", | |
filename="250_16_dinat_l_oneformer_cityscapes_90k.pth"), | |
"coco": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_coco", | |
filename="150_16_dinat_l_oneformer_coco_100ep.pth"), | |
"ade20k": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_ade20k", | |
filename="250_16_dinat_l_oneformer_ade20k_160k.pth") | |
} | |
MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT, | |
"Swin-L": SWIN_MODEL_DICT } | |
CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT, | |
"Swin-L": SWIN_CFG_DICT } | |
WIDTH_DICT = {"cityscapes": 512, | |
"coco": 512, | |
"ade20k": 640} | |
cpu_device = torch.device("cpu") | |
PREDICTORS = { | |
"DiNAT-L": { | |
"Cityscapes (19 classes)": None, | |
"COCO (133 classes)": None, | |
"ADE20K (150 classes)": None | |
}, | |
"Swin-L": { | |
"Cityscapes (19 classes)": None, | |
"COCO (133 classes)": None, | |
"ADE20K (150 classes)": None | |
} | |
} | |
def setup_predictors(): | |
for dataset in ["Cityscapes (19 classes)", "COCO (133 classes)", "ADE20K (150 classes)"]: | |
for backbone in ["DiNAT-L", "Swin-L"]: | |
cfg = setup_cfg(dataset, backbone) | |
PREDICTORS[backbone][dataset] = DefaultPredictor(cfg) | |
def setup_cfg(dataset, backbone): | |
# load config from file and command-line arguments | |
cfg = get_cfg() | |
add_deeplab_config(cfg) | |
add_common_config(cfg) | |
add_swin_config(cfg) | |
add_oneformer_config(cfg) | |
add_dinat_config(cfg) | |
dataset = KEY_DICT[dataset] | |
cfg_path = CFG_DICT[backbone][dataset] | |
cfg.merge_from_file(cfg_path) | |
if torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = 'cuda' | |
else: | |
cfg.MODEL.DEVICE = 'cpu' | |
cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset] | |
cfg.freeze() | |
return cfg | |
def setup_modules(dataset, backbone): | |
cfg = setup_cfg(dataset, backbone) | |
# predictor = DefaultPredictor(cfg) | |
predictor = PREDICTORS[backbone][dataset] | |
metadata = MetadataCatalog.get( | |
cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused" | |
) | |
if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]: | |
from cityscapesscripts.helpers.labels import labels | |
stuff_colors = [k.color for k in labels if k.trainId != 255] | |
metadata = metadata.set(stuff_colors=stuff_colors) | |
return predictor, metadata | |
def panoptic_run(img, predictor, metadata): | |
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) | |
predictions = predictor(img, "panoptic") | |
panoptic_seg, segments_info = predictions["panoptic_seg"] | |
out = visualizer.draw_panoptic_seg_predictions( | |
panoptic_seg.to(cpu_device), segments_info, alpha=0.5 | |
) | |
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) | |
out_map = visualizer_map.draw_panoptic_seg_predictions( | |
panoptic_seg.to(cpu_device), segments_info, alpha=1, is_text=False | |
) | |
return out, out_map | |
def instance_run(img, predictor, metadata): | |
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) | |
predictions = predictor(img, "instance") | |
instances = predictions["instances"].to(cpu_device) | |
out = visualizer.draw_instance_predictions(predictions=instances, alpha=0.5) | |
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) | |
out_map = visualizer_map.draw_instance_predictions(predictions=instances, alpha=1, is_text=False) | |
return out, out_map | |
def semantic_run(img, predictor, metadata): | |
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) | |
predictions = predictor(img, "semantic") | |
out = visualizer.draw_sem_seg( | |
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5 | |
) | |
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) | |
out_map = visualizer_map.draw_sem_seg( | |
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=1, is_text=False | |
) | |
return out, out_map | |
TASK_INFER = {"the task is panoptic": panoptic_run, "the task is instance": instance_run, "the task is semantic": semantic_run} | |
def segment(path, task, dataset, backbone): | |
predictor, metadata = setup_modules(dataset, backbone) | |
img = cv2.imread(path) | |
width = WIDTH_DICT[KEY_DICT[dataset]] | |
img = imutils.resize(img, width=width) | |
out, out_map = TASK_INFER[task](img, predictor, metadata) | |
out = Image.fromarray(out.get_image()) | |
out_map = Image.fromarray(out_map.get_image()) | |
return out, out_map | |
title = "OneFormer: One Transformer to Rule Universal Image Segmentation" | |
description = "<p style='color: #E0B941; font-size: 16px; font-weight: w600; text-align: center'> <a style='color: #E0B941;' href='https://praeclarumjj3.github.io/oneformer/' target='_blank'>Project Page</a> | <a style='color: #E0B941;' href='https://arxiv.org/abs/2211.06220' target='_blank'>OneFormer: One Transformer to Rule Universal Image Segmentation</a> | <a style='color: #E0B941;' href='https://github.com/SHI-Labs/OneFormer' target='_blank'>Github</a></p>" \ | |
+ "<p style='color:royalblue; margin: 10px; font-size: 16px; font-weight: w400;'> \ | |
[Note: Inference on CPU may take upto 2 minutes.] This is the official gradio demo for our paper <span style='color:#E0B941;'>OneFormer: One Transformer to Rule Universal Image Segmentation</span> To use OneFormer: <br> \ | |
(1) <span style='color:#E0B941;'>Upload an Image</span> or <span style='color:#E0B941;'> select a sample image from the examples</span> <br> \ | |
(2) Select the value of the <span style='color:#E0B941;'>Task Token Input</span> <br>\ | |
(3) Select the <span style='color:#E0B941;'>Model</span> </p>" | |
# article = | |
# css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}" | |
setup_predictors() | |
gradio_inputs = [gr.Image(source="upload", tool=None, label="Input Image",type="filepath"), | |
gr.inputs.Radio(choices=["the task is panoptic" ,"the task is instance", "the task is semantic"], type="value", default="the task is panoptic", label="Task Token Input"), | |
gr.inputs.Radio(choices=["COCO (133 classes)" ,"Cityscapes (19 classes)", "ADE20K (150 classes)"], type="value", default="Cityscapes (19 classes)", label="Model"), | |
gr.inputs.Radio(choices=["DiNAT-L" ,"Swin-L"], type="value", default="DiNAT-L", label="Backbone"), | |
] | |
gradio_outputs = [gr.Image(type="pil", label="Segmentation Overlay"), gr.Image(type="pil", label="Segmentation Map")] | |
examples = [["examples/coco.jpeg", "the task is panoptic", "COCO (133 classes)", "DiNAT-L"], | |
["examples/cityscapes.png", "the task is panoptic", "Cityscapes (19 classes)", "DiNAT-L"], | |
["examples/ade20k.jpeg", "the task is panoptic", "ADE20K (150 classes)", "DiNAT-L"]] | |
iface = gr.Interface(fn=segment, inputs=gradio_inputs, | |
outputs=gradio_outputs, | |
examples_per_page=5, | |
allow_flagging="never", | |
examples=examples, title=title, | |
description=description) | |
iface.launch(enable_queue=True) |