Spaces:
Sleeping
Sleeping
File size: 2,283 Bytes
5cb1539 3a6f1f2 782da61 3a6f1f2 0b6f668 3a6f1f2 e332358 99c661e e3ddad3 99c661e e3ddad3 99c661e 782da61 e332358 782da61 e3ddad3 99c661e 3a6f1f2 e332358 3a6f1f2 ef928a1 df195bf 782da61 df195bf 5ee83f7 782da61 ef928a1 e332358 3a6f1f2 782da61 3a6f1f2 e332358 8f57daf 11cd34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
import os
import cv2
def inference(file, mask, model, alpha_influence, segmentation_strength):
im = cv2.imread(file, cv2.IMREAD_COLOR)
cv2.imwrite(os.path.join("input.png"), im)
from rembg import new_session, remove
input_path = 'input.png'
output_path = 'output.png'
with open(input_path, 'rb') as i:
with open(output_path, 'wb') as o:
input = i.read()
output = remove(
input,
session=new_session(model),
only_mask=(True if mask == "Mask only" else False),
alpha=alpha_influence, # Control de influencia del canal alfa
bg_color=(0, 0, 0, segmentation_strength) # Control de fuerza de segmentación
)
o.write(output)
return os.path.join("output.png")
title = "RemBG_ Super"
description = "Gradio demo for RemBG. To use it, simply upload your image and adjust the alpha influence and segmentation strength."
article = "<p style='text-align: center;'><a href='https://github.com/danielgatis/rembg' target='_blank'>Github Repo</a></p>"
gr.Interface(
inference,
[
gr.inputs.Image(type="filepath", label="Input"),
gr.inputs.Radio(
[
"Default",
"Mask only"
],
type="value",
default="Default",
label="Choices"
),
gr.inputs.Dropdown([
"u2net",
"u2netp",
"u2net_human_seg",
"u2net_cloth_seg",
"silueta",
"isnet-general-use",
"isnet-anime",
"sam",
],
type="value",
default="isnet-general-use",
label="Models"
),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Alpha Influence"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Segmentation Strength"),
],
gr.outputs.Image(type="filepath", label="Output"),
title=title,
description=description,
article=article,
examples=[["lion.png", "Default", "u2net", 0.5, 0.5], ["girl.jpg", "Default", "u2net", 0.5, 0.5], ["anime-girl.jpg", "Default", "isnet-anime", 0.5, 0.5]],
enable_queue=True
).launch()
|