ir_chinese_medqa / colbert /searcher.py
欧卫
'add_app_files'
58627fa
import os
import torch
from tqdm import tqdm
from typing import Union
from colbert.data import Collection, Queries, Ranking
from colbert.modeling.checkpoint import Checkpoint
from colbert.search.index_storage import IndexScorer
from colbert.infra.provenance import Provenance
from colbert.infra.run import Run
from colbert.infra.config import ColBERTConfig, RunConfig
from colbert.infra.launcher import print_memory_stats
import time
TextQueries = Union[str, 'list[str]', 'dict[int, str]', Queries]
class Searcher:
def __init__(self, index, checkpoint=None, collection=None, config=None):
print_memory_stats()
initial_config = ColBERTConfig.from_existing(config, Run().config)
default_index_root = initial_config.index_root_
self.index = os.path.join(default_index_root, index)
self.index_config = ColBERTConfig.load_from_index(self.index)
self.checkpoint = checkpoint or self.index_config.checkpoint
self.checkpoint_config = ColBERTConfig.load_from_checkpoint(self.checkpoint)
self.config = ColBERTConfig.from_existing(self.checkpoint_config, self.index_config, initial_config)
self.collection = Collection.cast(collection or self.config.collection)
self.configure(checkpoint=self.checkpoint, collection=self.collection)
self.checkpoint = Checkpoint(self.checkpoint, colbert_config=self.config)
use_gpu = self.config.total_visible_gpus > 0
if use_gpu:
self.checkpoint = self.checkpoint.cuda()
self.ranker = IndexScorer(self.index, use_gpu)
print_memory_stats()
def configure(self, **kw_args):
self.config.configure(**kw_args)
def encode(self, text: TextQueries):
queries = text if type(text) is list else [text]
bsize = 128 if len(queries) > 128 else None
self.checkpoint.query_tokenizer.query_maxlen = self.config.query_maxlen
Q = self.checkpoint.queryFromText(queries, bsize=bsize, to_cpu=True)
return Q
def search(self, text: str, k=10, filter_fn=None):
Q = self.encode(text)
return self.dense_search(Q, k, filter_fn=filter_fn)
def search_all(self, queries: TextQueries, k=10, filter_fn=None):
queries = Queries.cast(queries)
queries_ = list(queries.values())
Q = self.encode(queries_)
return self._search_all_Q(queries, Q, k, filter_fn=filter_fn)
def _search_all_Q(self, queries, Q, k, filter_fn=None):
all_scored_pids = [list(zip(*self.dense_search(Q[query_idx:query_idx+1], k, filter_fn=filter_fn)))
for query_idx in tqdm(range(Q.size(0)))]
data = {qid: val for qid, val in zip(queries.keys(), all_scored_pids)}
provenance = Provenance()
provenance.source = 'Searcher::search_all'
provenance.queries = queries.provenance()
provenance.config = self.config.export()
provenance.k = k
return Ranking(data=data, provenance=provenance)
def dense_search(self, Q: torch.Tensor, k=10, filter_fn=None):
if k <= 10:
if self.config.ncells is None:
self.configure(ncells=1)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.5)
if self.config.ndocs is None:
self.configure(ndocs=256)
elif k <= 100:
if self.config.ncells is None:
self.configure(ncells=2)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.45)
if self.config.ndocs is None:
self.configure(ndocs=1024)
else:
if self.config.ncells is None:
self.configure(ncells=4)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.4)
if self.config.ndocs is None:
self.configure(ndocs=max(k * 4, 4096))
pids, scores = self.ranker.rank(self.config, Q, filter_fn=filter_fn)
return pids[:k], list(range(1, k+1)), scores[:k]