Spaces:
Runtime error
Runtime error
File size: 7,441 Bytes
58627fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from colbert.infra.config.config import ColBERTConfig
from colbert.search.strided_tensor import StridedTensor
from colbert.utils.utils import print_message, flatten
from colbert.modeling.base_colbert import BaseColBERT
import torch
import string
import os
import pathlib
from torch.utils.cpp_extension import load
class ColBERT(BaseColBERT):
"""
This class handles the basic encoding and scoring operations in ColBERT. It is used for training.
"""
def __init__(self, name='bert-base-uncased', colbert_config=None):
super().__init__(name, colbert_config)
self.use_gpu = colbert_config.total_visible_gpus > 0
ColBERT.try_load_torch_extensions(self.use_gpu)
if self.colbert_config.mask_punctuation:
self.skiplist = {w: True
for symbol in string.punctuation
for w in [symbol, self.raw_tokenizer.encode(symbol, add_special_tokens=False)[0]]}
@classmethod
def try_load_torch_extensions(cls, use_gpu):
if hasattr(cls, "loaded_extensions") or use_gpu:
return
print_message(f"Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...")
segmented_maxsim_cpp = load(
name="segmented_maxsim_cpp",
sources=[
os.path.join(
pathlib.Path(__file__).parent.resolve(), "segmented_maxsim.cpp"
),
],
extra_cflags=["-O3"],
verbose=os.getenv("COLBERT_LOAD_TORCH_EXTENSION_VERBOSE", "False") == "True",
)
cls.segmented_maxsim = segmented_maxsim_cpp.segmented_maxsim_cpp
cls.loaded_extensions = True
def forward(self, Q, D):
Q = self.query(*Q)
D, D_mask = self.doc(*D, keep_dims='return_mask')
# Repeat each query encoding for every corresponding document.
Q_duplicated = Q.repeat_interleave(self.colbert_config.nway, dim=0).contiguous()
scores = self.score(Q_duplicated, D, D_mask)
if self.colbert_config.use_ib_negatives:
ib_loss = self.compute_ib_loss(Q, D, D_mask)
return scores, ib_loss
return scores
def compute_ib_loss(self, Q, D, D_mask):
# TODO: Organize the code below! Quite messy.
scores = (D.unsqueeze(0) @ Q.permute(0, 2, 1).unsqueeze(1)).flatten(0, 1) # query-major unsqueeze
scores = colbert_score_reduce(scores, D_mask.repeat(Q.size(0), 1, 1), self.colbert_config)
nway = self.colbert_config.nway
all_except_self_negatives = [list(range(qidx*D.size(0), qidx*D.size(0) + nway*qidx+1)) +
list(range(qidx*D.size(0) + nway * (qidx+1), qidx*D.size(0) + D.size(0)))
for qidx in range(Q.size(0))]
scores = scores[flatten(all_except_self_negatives)]
scores = scores.view(Q.size(0), -1) # D.size(0) - self.colbert_config.nway + 1)
labels = torch.arange(0, Q.size(0), device=scores.device) * (self.colbert_config.nway)
return torch.nn.CrossEntropyLoss()(scores, labels)
def query(self, input_ids, attention_mask):
input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
Q = self.bert(input_ids, attention_mask=attention_mask)[0]
Q = self.linear(Q)
mask = torch.tensor(self.mask(input_ids, skiplist=[]), device=self.device).unsqueeze(2).float()
Q = Q * mask
return torch.nn.functional.normalize(Q, p=2, dim=2)
def doc(self, input_ids, attention_mask, keep_dims=True):
assert keep_dims in [True, False, 'return_mask']
input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
D = self.bert(input_ids, attention_mask=attention_mask)[0]
D = self.linear(D)
mask = torch.tensor(self.mask(input_ids, skiplist=self.skiplist), device=self.device).unsqueeze(2).float()
D = D * mask
D = torch.nn.functional.normalize(D, p=2, dim=2)
if self.use_gpu:
D = D.half()
if keep_dims is False:
D, mask = D.cpu(), mask.bool().cpu().squeeze(-1)
D = [d[mask[idx]] for idx, d in enumerate(D)]
elif keep_dims == 'return_mask':
return D, mask.bool()
return D
def score(self, Q, D_padded, D_mask):
# assert self.colbert_config.similarity == 'cosine'
if self.colbert_config.similarity == 'l2':
assert self.colbert_config.interaction == 'colbert'
return (-1.0 * ((Q.unsqueeze(2) - D_padded.unsqueeze(1))**2).sum(-1)).max(-1).values.sum(-1)
return colbert_score(Q, D_padded, D_mask, config=self.colbert_config)
def mask(self, input_ids, skiplist):
mask = [[(x not in skiplist) and (x != 0) for x in d] for d in input_ids.cpu().tolist()]
return mask
# TODO: In Query/DocTokenizer, use colbert.raw_tokenizer
# TODO: The masking below might also be applicable in the kNN part
def colbert_score_reduce(scores_padded, D_mask, config: ColBERTConfig):
D_padding = ~D_mask.view(scores_padded.size(0), scores_padded.size(1)).bool()
scores_padded[D_padding] = -9999
scores = scores_padded.max(1).values
assert config.interaction in ['colbert', 'flipr'], config.interaction
if config.interaction == 'flipr':
assert config.query_maxlen == 64, ("for now", config)
# assert scores.size(1) == config.query_maxlen, scores.size()
K1 = config.query_maxlen // 2
K2 = 8
A = scores[:, :config.query_maxlen].topk(K1, dim=-1).values.sum(-1)
B = 0
if K2 <= scores.size(1) - config.query_maxlen:
B = scores[:, config.query_maxlen:].topk(K2, dim=-1).values.sum(1)
return A + B
return scores.sum(-1)
# TODO: Wherever this is called, pass `config=`
def colbert_score(Q, D_padded, D_mask, config=ColBERTConfig()):
"""
Supply sizes Q = (1 | num_docs, *, dim) and D = (num_docs, *, dim).
If Q.size(0) is 1, the matrix will be compared with all passages.
Otherwise, each query matrix will be compared against the *aligned* passage.
EVENTUALLY: Consider masking with -inf for the maxsim (or enforcing a ReLU).
"""
use_gpu = config.total_visible_gpus > 0
if use_gpu:
Q, D_padded, D_mask = Q.cuda(), D_padded.cuda(), D_mask.cuda()
assert Q.dim() == 3, Q.size()
assert D_padded.dim() == 3, D_padded.size()
assert Q.size(0) in [1, D_padded.size(0)]
scores = D_padded @ Q.to(dtype=D_padded.dtype).permute(0, 2, 1)
return colbert_score_reduce(scores, D_mask, config)
def colbert_score_packed(Q, D_packed, D_lengths, config=ColBERTConfig()):
"""
Works with a single query only.
"""
use_gpu = config.total_visible_gpus > 0
if use_gpu:
Q, D_packed, D_lengths = Q.cuda(), D_packed.cuda(), D_lengths.cuda()
Q = Q.squeeze(0)
assert Q.dim() == 2, Q.size()
assert D_packed.dim() == 2, D_packed.size()
scores = D_packed @ Q.to(dtype=D_packed.dtype).T
if use_gpu or config.interaction == "flipr":
scores_padded, scores_mask = StridedTensor(scores, D_lengths, use_gpu=use_gpu).as_padded_tensor()
return colbert_score_reduce(scores_padded, scores_mask, config)
else:
return ColBERT.segmented_maxsim(scores, D_lengths)
|