Spaces:
Running
Running
MNIST practice
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.optim as optim
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
|
11 |
+
class simpleCNN(nn.Module):
|
12 |
+
def __init__(self, num_classes=3):
|
13 |
+
super(simpleCNN, self).__init__()
|
14 |
+
self.name = "simpleCNN"
|
15 |
+
self.conv1 = nn.Conv2d(3, 5, 5)
|
16 |
+
self.pool = nn.MaxPool2d(2, 2)
|
17 |
+
self.conv2 = nn.Conv2d(5, 10, 5)
|
18 |
+
self.fc1 = nn.Linear(10 * 5 * 5, 32)
|
19 |
+
self.fc2 = nn.Linear(32, num_classes)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.pool(F.relu(self.conv1(x)))
|
23 |
+
x = self.pool(F.relu(self.conv2(x)))
|
24 |
+
x = x.view(-1, 10 * 5 * 5)
|
25 |
+
x = F.relu(self.fc1(x))
|
26 |
+
x = self.fc2(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
net = simpleCNN(num_classes=3)
|
31 |
+
net.load_state_dict(torch.load("./ckpt.pth", map_location=torch.device("cpu")))
|
32 |
+
net.eval()
|
33 |
+
class_labels = ["other", "car", "truck"]
|
34 |
+
|
35 |
+
transform = transforms.Compose(
|
36 |
+
[
|
37 |
+
transforms.Resize((32, 32)),
|
38 |
+
transforms.ToTensor(),
|
39 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
def predict(img):
|
46 |
+
global net
|
47 |
+
img = Image.fromarray(img.astype("uint8"), "RGB")
|
48 |
+
img = transform(img).unsqueeze(0)
|
49 |
+
pred = net(img).detach().numpy()[0]
|
50 |
+
pred = np.exp(pred) / np.sum(np.exp(pred))
|
51 |
+
return {class_labels[i]: float(pred[i]) for i in range(len(class_labels))}
|
52 |
+
|
53 |
+
|
54 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="label")
|
55 |
+
iface.launch()
|
ckpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d76475d89dc4b7a811eebff3dfb1f12e207534a4281c58d9dd110e7117aee9b
|
3 |
+
size 41457
|