dhhd255 commited on
Commit
2202f73
·
1 Parent(s): 3864676

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -14,12 +14,16 @@ model = AutoModel.from_pretrained('dhhd255/parkinsons_pred0.1')
14
  # Move the model to the device
15
  model = model.to(device)
16
 
17
- # Use Streamlit to upload an image
 
18
  uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
19
  if uploaded_file is not None:
 
 
20
  # Load and resize the image
21
  image_size = (224, 224)
22
  new_image = Image.open(uploaded_file).convert('RGB').resize(image_size)
 
23
  new_image = np.array(new_image)
24
  new_image = torch.from_numpy(new_image).transpose(0, 2).float().unsqueeze(0)
25
 
@@ -40,6 +44,6 @@ if uploaded_file is not None:
40
  logits = feature_reducer(logits)
41
  predicted_class = torch.argmax(logits, dim=1).item()
42
  if(predicted_class == 0):
43
- st.write('Predicted class: Parkinson\'s')
44
  else:
45
- st.write('Predicted class: Healthy')
 
14
  # Move the model to the device
15
  model = model.to(device)
16
 
17
+ st.title("Parkinson's Disease Prediction")
18
+
19
  uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
20
  if uploaded_file is not None:
21
+ col1, col2 = st.columns(2)
22
+
23
  # Load and resize the image
24
  image_size = (224, 224)
25
  new_image = Image.open(uploaded_file).convert('RGB').resize(image_size)
26
+ col1.image(new_image, use_column_width=True)
27
  new_image = np.array(new_image)
28
  new_image = torch.from_numpy(new_image).transpose(0, 2).float().unsqueeze(0)
29
 
 
44
  logits = feature_reducer(logits)
45
  predicted_class = torch.argmax(logits, dim=1).item()
46
  if(predicted_class == 0):
47
+ col2.subheader('Predicted class: Parkinson\'s')
48
  else:
49
+ col2.subheader('Predicted class: Healthy')