dhhd255's picture
Update app.py
0a3512b
raw
history blame
2.91 kB
import torch
from transformers import AutoModel
import torch.nn as nn
from PIL import Image
import numpy as np
import streamlit as st
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the trained model from the Hugging Face Hub
model = AutoModel.from_pretrained('dhhd255/parkinsons_pred0.1')
# Move the model to the device
model = model.to(device)
# Add custom CSS to use the Inter font, define custom classes for healthy and parkinsons results, increase the font size, make the text bold, and define the footer styles
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter&display=swap');
body {
font-family: 'Inter', sans-serif;
}
.result {
font-size: 24px;
font-weight: bold;
}
.healthy {
color: #007E3F;
}
.parkinsons {
color: #C30000;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
color:white;
background-color: #141414;
width: 100%;
text-align: center;
padding: 10px;
}
</style>
""", unsafe_allow_html=True)
st.title("Parkinson's Disease Prediction")
st.caption('Made by Jayant')
uploaded_file = st.file_uploader("Upload your :blue[Spiral] drawing here", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
col1, col2 = st.columns(2)
# Load and resize the image
image_size = (224, 224)
new_image = Image.open(uploaded_file).convert('RGB').resize(image_size)
col1.image(new_image, use_column_width=True)
new_image = np.array(new_image)
new_image = torch.from_numpy(new_image).transpose(0, 2).float().unsqueeze(0)
# Move the data to the device
new_image = new_image.to(device)
# Make predictions using the trained model
with torch.no_grad():
predictions = model(new_image)
logits = predictions.last_hidden_state
logits = logits.view(logits.shape[0], -1)
num_classes=2
feature_reducer = nn.Linear(logits.shape[1], num_classes)
logits = logits.to(device)
feature_reducer = feature_reducer.to(device)
logits = feature_reducer(logits)
predicted_class = torch.argmax(logits, dim=1).item()
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
if(predicted_class == 0):
col2.markdown('<span class="result parkinsons">Predicted class: Parkinson\'s</span>', unsafe_allow_html=True)
st.caption(f'{confidence*100:.0f}% sure')
else:
col2.markdown('<span class="result healthy">Predicted class: Healthy</span>', unsafe_allow_html=True)
st.caption(f'{confidence*100:.0f}% sure')
# Add the footer
st.markdown('<div class="footer">Hello</div>', unsafe_allow_html=True)