File size: 3,300 Bytes
49a842a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download

class Text2Video():
    def __init__(self,result_dir='./tmp/',gpu_num=1) -> None:
        self.download_model()
        self.result_dir = result_dir
        if not os.path.exists(self.result_dir):
            os.mkdir(self.result_dir)
        ckpt_path='checkpoints/base_1024_v1/model.ckpt'
        config_file='configs/inference_t2v_1024_v1.0.yaml'
        config = OmegaConf.load(config_file)
        model_config = config.pop("model", OmegaConf.create())
        model_config['params']['unet_config']['params']['use_checkpoint']=False   
        model_list = []
        for gpu_id in range(gpu_num):
            model = instantiate_from_config(model_config)
            # model = model.cuda(gpu_id)
            assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
            model = load_model_checkpoint(model, ckpt_path)
            model.eval()
            model_list.append(model)
        self.model_list = model_list
        self.save_fps = 8

    def get_prompt(self, prompt, steps=50, cfg_scale=12.0, eta=1.0, fps=16):
        torch.cuda.empty_cache()
        print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
        start = time.time()
        gpu_id=0
        if steps > 60:
            steps = 60 
        model = self.model_list[gpu_id]
        model = model.cuda()
        batch_size=1
        channels = model.model.diffusion_model.in_channels
        frames = model.temporal_length
        h, w = 576 // 8, 1024 // 8
        noise_shape = [batch_size, channels, frames, h, w]

        # text cond
        text_emb = model.get_learned_conditioning([prompt])
        cond = {"c_crossattn": [text_emb], "fps": fps}
        
        ## inference
        batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
        ## b,samples,c,t,h,w
        prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
        prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
        prompt_str=prompt_str[:30]

        save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
        print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
        model=model.cpu()
        return os.path.join(self.result_dir, f"{prompt_str}.mp4")
    
    def download_model(self):
        REPO_ID = 'VideoCrafter/Text2Video-1024'
        filename_list = ['model.ckpt']
        if not os.path.exists('./checkpoints/base_1024_v1/'):
            os.makedirs('./checkpoints/base_1024_v1/')
        for filename in filename_list:
            local_file = os.path.join('./checkpoints/base_1024_v1/', filename)

            if not os.path.exists(local_file):
                hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/base_1024_v1/', local_dir_use_symlinks=False)

    
if __name__ == '__main__':
    t2v = Text2Video()
    video_path = t2v.get_prompt('a black swan swims on the pond')
    print('done', video_path)