Spaces:
Runtime error
Runtime error
File size: 9,177 Bytes
3852055 49a842a 3852055 49a842a 3852055 49a842a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
title: VideoCrafter
app_file: gradio_app.py
sdk: gradio
sdk_version: 3.41.2
---
## ___***VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models***___
<a href='https://ailab-cvc.github.io/videocrafter2/'><img src='https://img.shields.io/badge/Project-Page-green'></a>
<a href='https://arxiv.org/abs/2401.09047'><img src='https://img.shields.io/badge/Technique-Report-red'></a>
[![Discord](https://dcbadge.vercel.app/api/server/rrayYqZ4tf?style=flat)](https://discord.gg/rrayYqZ4tf)
<a href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
[![GitHub](https://img.shields.io/github/stars/VideoCrafter/VideoCrafter?style=social)](https://github.com/VideoCrafter/VideoCrafter)
### π₯π₯ The VideoCrafter2 Large improvements over VideoCrafter1 with limited data. Better Motion, Better Concept Combination!!!
Please Join us and create your own film on [Discord/Floor33](https://discord.gg/rrayYqZ4tf).
------
### π₯ Exquisite film, produced by VideoCrafter2, directed by Human
[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/TUsFkW0tK-s/0.jpg)](https://www.youtube.com/watch?v=TUsFkW0tK-s)
## π Introduction
π€π€π€ VideoCrafter is an open-source video generation and editing toolbox for crafting video content.
It currently includes the Text2Video and Image2Video models:
### 1. Generic Text-to-video Generation
Click the GIF to access the high-resolution video.
<table class="center">
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/d20ee09d-fc32-44a8-9e9a-f12f44b30411"><img src=assets/t2v/tom.gif width="320"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/f1d9f434-28e8-44f6-a9b8-cffd67e4574d"><img src=assets/t2v/child.gif width="320"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/bbcfef0e-d8fb-4850-adc0-d8f937c2fa36"><img src=assets/t2v/woman.gif width="320"></td>
<tr>
<td style="text-align:center;" width="320">"Tom Cruise's face reflects focus, his eyes filled with purpose and drive."</td>
<td style="text-align:center;" width="320">"A child excitedly swings on a rusty swing set, laughter filling the air."</td>
<td style="text-align:center;" width="320">"A young woman with glasses is jogging in the park wearing a pink headband."</td>
<tr>
</table >
<table class="center">
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/7edafc5a-750e-45f3-a46e-b593751a4b12"><img src=assets/t2v/couple.gif width="320"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/37fe41c8-31fb-4e77-bcf9-fa159baa6d86"><img src=assets/t2v/rabbit.gif width="320"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/09791a46-a243-41b8-a6bb-892cdd3a83a2"><img src=assets/t2v/duck.gif width="320"></td>
<tr>
<td style="text-align:center;" width="320">"With the style of van gogh, A young couple dances under the moonlight by the lake."</td>
<td style="text-align:center;" width="320">"A rabbit, low-poly game art style"</td>
<td style="text-align:center;" width="320">"Impressionist style, a yellow rubber duck floating on the wave on the sunset"</td>
<tr>
</table >
### 2. Generic Image-to-video Generation
<table class="center">
<td><img src=assets/i2v/input/blackswan.png width="170"></td>
<td><img src=assets/i2v/input/horse.png width="170"></td>
<td><img src=assets/i2v/input/chair.png width="170"></td>
<td><img src=assets/i2v/input/sunset.png width="170"></td>
<tr>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/1a57edd9-3fd2-4ce9-8313-89aca95b6ec7"><img src=assets/i2v/blackswan.gif width="170"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/d671419d-ae49-4889-807e-b841aef60e8a"><img src=assets/i2v/horse.gif width="170"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/39d730d9-7b47-4132-bdae-4d18f3e651ee"><img src=assets/i2v/chair.gif width="170"></td>
<td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/dc8dd0d5-a80d-4f31-94db-f9ea0b13172b"><img src=assets/i2v/sunset.gif width="170"></td>
<tr>
<td style="text-align:center;" width="170">"a black swan swims on the pond"</td>
<td style="text-align:center;" width="170">"a girl is riding a horse fast on grassland"</td>
<td style="text-align:center;" width="170">"a boy sits on a chair facing the sea"</td>
<td style="text-align:center;" width="170">"two galleons moving in the wind at sunset"</td>
</table >
---
## π Changelog
- __[2024.01.18]__: π₯π₯ Release the [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/) and [Tech Report](https://arxiv.org/abs/2401.09047)!
- __[2023.10.30]__: Release [VideoCrafter1](https://arxiv.org/abs/2310.19512) Technical Report!
- __[2023.10.13]__: π₯π₯ Release the VideoCrafter1, High Quality Video Generation!
- __[2023.08.14]__: Release a new version of VideoCrafter on [Discord/Floor33](https://discord.gg/uHaQuThT). Please join us to create your own film!
- __[2023.04.18]__: Release a VideoControl model with most of the watermarks removed!
- __[2023.04.05]__: Release pretrained Text-to-Video models, VideoLora models, and inference code.
<br>
## β³ Models
|T2V-Models|Resolution|Checkpoints|
|:---------|:---------|:--------|
|VideoCrafter2|| Coming soon
|VideoCrafter1|576x1024|[Hugging Face](https://huggingface.co/VideoCrafter/Text2Video-1024/blob/main/model.ckpt)
|VideoCrafter1|320x512|[Hugging Face](https://huggingface.co/VideoCrafter/Text2Video-512/blob/main/model.ckpt)
|I2V-Models|Resolution|Checkpoints|
|:---------|:---------|:--------|
|VideoCrafter1|320x512|[Hugging Face](https://huggingface.co/VideoCrafter/Image2Video-512/blob/main/model.ckpt)
## βοΈ Setup
### 1. Install Environment via Anaconda (Recommended)
```bash
conda create -n videocrafter python=3.8.5
conda activate videocrafter
pip install -r requirements.txt
```
## π« Inference
### 1. Text-to-Video
1) Download pretrained T2V models via [Hugging Face](https://huggingface.co/VideoCrafter/Text2Video-1024-v1.0/blob/main/model.ckpt), and put the `model.ckpt` in `checkpoints/base_1024_v1/model.ckpt`.
2) Input the following commands in terminal.
```bash
sh scripts/run_text2video.sh
```
### 2. Image-to-Video
1) Download pretrained I2V models via [Hugging Face](https://huggingface.co/VideoCrafter/Image2Video-512-v1.0/blob/main/model.ckpt), and put the `model.ckpt` in `checkpoints/i2v_512_v1/model.ckpt`.
2) Input the following commands in terminal.
```bash
sh scripts/run_image2video.sh
```
### 3. Local Gradio demo
1. Download the pretrained T2V and I2V models and put them in the corresponding directory according to the previous guidelines.
2. Input the following commands in terminal.
```bash
python gradio_app.py
```
---
## π Techinical Report
π VideoCrafter2 Tech report: [VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models](https://arxiv.org/abs/2401.09047)
π VideoCrafter1 Tech report: [VideoCrafter1: Open Diffusion Models for High-Quality Video Generation](https://arxiv.org/abs/2310.19512)
<br>
## π Citation
The technical report is currently unavailable as it is still in preparation. You can cite the paper of our image-to-video model and related base model.
```
@misc{chen2024videocrafter2,
title={VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models},
author={Haoxin Chen and Yong Zhang and Xiaodong Cun and Menghan Xia and Xintao Wang and Chao Weng and Ying Shan},
year={2024},
eprint={2401.09047},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{chen2023videocrafter1,
title={VideoCrafter1: Open Diffusion Models for High-Quality Video Generation},
author={Haoxin Chen and Menghan Xia and Yingqing He and Yong Zhang and Xiaodong Cun and Shaoshu Yang and Jinbo Xing and Yaofang Liu and Qifeng Chen and Xintao Wang and Chao Weng and Ying Shan},
year={2023},
eprint={2310.19512},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{xing2023dynamicrafter,
title={DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors},
author={Jinbo Xing and Menghan Xia and Yong Zhang and Haoxin Chen and Xintao Wang and Tien-Tsin Wong and Ying Shan},
year={2023},
eprint={2310.12190},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{he2022lvdm,
title={Latent Video Diffusion Models for High-Fidelity Long Video Generation},
author={Yingqing He and Tianyu Yang and Yong Zhang and Ying Shan and Qifeng Chen},
year={2022},
eprint={2211.13221},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## π€ Acknowledgements
Our codebase builds on [Stable Diffusion](https://github.com/Stability-AI/stablediffusion).
Thanks the authors for sharing their awesome codebases!
## π’ Disclaimer
We develop this repository for RESEARCH purposes, so it can only be used for personal/research/non-commercial purposes.
****
|