Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the model using pipeline | |
pipe = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2") | |
# Define the prediction function | |
def predict(audio): | |
print("Audio file received:", audio) # Debugging statement | |
try: | |
result = pipe(audio) | |
print("Raw prediction result:", result) # Debugging statement | |
# Convert the result to the expected format | |
output = {item['label']: item['score'] for item in result} | |
print("Formatted prediction result:", output) # Debugging statement | |
return output | |
except Exception as e: | |
print("Error during prediction:", e) # Debugging statement | |
return {"error": str(e)} | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.Label(), | |
title="Testing Deepfake Audio Detection Simple Interface", | |
description="Upload an audio file or record your voice to detect if the audio is a deepfake." | |
) | |
# Launch the interface | |
iface.launch() | |