File size: 4,225 Bytes
3005122
 
 
 
 
 
 
aac78db
3005122
 
 
 
 
aac78db
3005122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac78db
3005122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac78db
 
 
 
 
3005122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os

import gradio as gr
import spaces
import torch
from diffusers import AutoPipelineForInpainting
from loguru import logger
from PIL import Image, ImageChops

SUPPORTED_MODELS = [
    "stabilityai/sdxl-turbo",
    "stabilityai/stable-diffusion-3-medium-diffusers",
    "stabilityai/stable-diffusion-xl-base-1.0",
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "timbrooks/instruct-pix2pix",
]
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"


model = os.environ.get("MODEL_ID", DEFAULT_MODEL)
gpu_duration = int(os.environ.get("GPU_DURATION", 60))


def load_pipeline(model):
    return AutoPipelineForInpainting.from_pretrained(
        model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
    )


logger.debug(f"Loading pipeline: {dict(model=model)}")
pipe = load_pipeline(model).to("cuda" if torch.cuda.is_available() else "mps")


@logger.catch(reraise=True)
@spaces.GPU(duration=gpu_duration)
def infer(
    prompt: str,
    image_editor: dict,
    negative_prompt: str,
    strength: float,
    num_inference_steps: int,
    guidance_scale: float,
    progress=gr.Progress(track_tqdm=True),
):
    logger.info(
        f"Starting image generation: {dict(model=model, prompt=prompt, image_editor=image_editor)}"
    )

    init_image: Image.Image = image_editor["background"].convert("RGB")

    # Downscale the image
    init_image.thumbnail((1024, 1024))

    mask_layer = image_editor["layers"][0]
    mask_image = Image.new("RGBA", mask_layer.size, "white")
    mask_image = Image.alpha_composite(mask_image, mask_layer).convert("RGB")
    mask_image = ImageChops.invert(mask_image)
    mask_image.thumbnail((1024, 1024))

    additional_args = {
        k: v
        for k, v in dict(
            strength=strength,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
        ).items()
        if v
    }

    logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")

    images = pipe(
        prompt=prompt,
        image=init_image,
        mask_image=mask_image,
        negative_prompt=negative_prompt,
        **additional_args,
    ).images
    return images[0]


css = """
@media (max-width: 1280px) {
  #images-container {
    flex-direction: column;
  }
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.Markdown("# Inpainting")
        gr.Markdown(f"## Model: `{model}`")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        with gr.Row(elem_id="images-container"):
            image_editor = gr.ImageMask(label="Initial image", type="pil")

            result = gr.Image(label="Result")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            with gr.Row():
                strength = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=0,
                    maximum=100,
                    step=1,
                    value=0,
                )

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=100.0,
                    step=0.1,
                    value=0.0,
                )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            image_editor,
            negative_prompt,
            strength,
            num_inference_steps,
            guidance_scale,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()